

PAYROLL RECORD ENTRY FORM

This screen is used to enter payroll records one at a time. LCPtracker has included utility for contractors to load payroll information from a spreadsheet to save time. Details for this process are provided in the section UPLOAD RECORDS of the Contractor instruction manual. For a quick one page screen shot, you may skip to the last page.

The second step in the Payroll Entry process is shown below. The upper portion of this screen self populates from the data entered in step one. You can tab through this screen or use your mouse to click in fields to enter data.

Each section and field of the Payroll Record Entry Form will be explained. NOTE: some fields that are optional in the initial setup process by the Agency are the <u>Wages Paid in Lieu of Fringes</u> and the <u>Rate in Lieu of Fringes</u>. If your Agency chose not to allow this feature, you will not see these 2 fields in your Payroll Record entry form page 2 of 2.

This is a WEEKLY reporting form, you report hours worked for the week being reported on, this is not an accumulation. All fields are for the week you are reporting hours worked and wages paid.

Optional Wages Paid In Lieu/Rate in Lieu fields available for use:

Optional Wages Paid In Lieu/Rate in Lieu fields NOT available for use:

©LCPtracker, Inc. – All Rights Reserved

Page 1 of 8

There is also the ability for Administrators and/or Primes to require Work Orders for Payroll Entry. If the Project is associated with Work Orders and that section of Project setup is checked (Administrator action only) you will see Work Orders as an option. If you are a <u>Prime Contractor</u> be sure to review the work order Setup section. Prime Contractors can define work order numbers.

Note: if the <u>Work Order</u> option is showing and there are no Work Orders to choose from in the drop down, please contact your Prime or go to Projects tab and click the "Show Info" for that Project and start with that contact.

<u>Gross Employee Pay this Project</u> should be equal to the hourly rate fields x the hours posted on this payroll record. This amount does NOT include fringes. It is usually the amount that is provided by your payroll system. If you pay additional <u>Wages Paid in Lieu of Fringes</u> then enter this amount in that field.

Wages Paid in Lieu should be equal to the Rate in Lieu x the hours posted on this payroll record. Wages Paid in Lieu are those amounts paid to the employee when no fringe benefits are paid or when the fringe benefits paid are insufficient to meet the required total hour rate of pay.

<u>Gross Pay All Projects</u> should be employee's Gross Pay for the week regardless of what Projects were worked on.

Gross Employee Paid in Cross Pay All Projects

2600.000 275.000 2575.000

Enter the <u>Basic Hourly Rate of Pay</u>, <u>Hourly Overtime Rate</u>, <u>Hourly Double Time Rate</u>, and <u>Rate In Lieu of Fringes</u> (if you are using, Rate in Lieu/Wages Paid in Lieu are not always used by all users), you pay the employee in the <u>blue</u> fields. Enter the overtime rates as required when overtime is worked. You can change them at any time.

Here we show how the Gross Employee Pay field is equal to the hourly rates x the hours posted and then the Wages Paid in Lieu of Fringes is equal to the Rate in Lieu x all hours posted.

Classifications

The Craft/Classification (Journey Level) may be edited if incorrect by clicking on the Edit and making another choice. Below we show the classification section for both those that have only one craft/classification as well as an example for someone with more than one Jurisdiction and/or Location to choose from. All are editable at any time.

Hours Worked Each Day

The Hours worked each day should <u>ONLY</u> be the hours reported for working on this project for the week you are reporting on. Again this is not accumulative. Under this section titled Hours Worked Each Day enter the number of Regular Time (Straight-time), Overtime at 1.5 and Double-Time hours worked each day for the payroll period (one week).

The Screen automatically adjusts the weekly payroll period to reflect <u>your</u> week-end-date. As laid out in the beginning of the Enter Records section.

Fringes /Contributions paid to others (not employee) for this project only

If you entered the hourly rate of fringe benefits in the Employee Setup or Fringe Benefit Maintenance table then click the "Calculate Fringes" button. The calculated fringe amounts can be edited if required. The feature will take the hours posted in the Hours worked section of the Payroll Record and multiply them by the fringe benefit rates. (This Function may NOT be available to you).

If you did not enter the rates, then enter the Fringe /Contributions (This Project Only). Enter the appropriate amount for each of the categories in this section. If there is no data for a box, leave it blank. This example there is 55 hours total; 40 regular, 10 overtime and 5 double-time. We noted in red what the hourly values are in the Employee setup.

©LCPtracker, Inc. – All Rights Reserved

Page **4** of **8**

The "more links" below the Vac/Hold/Dues and Pension explains additional detail. Here we will present that detail.

Vacation / Holiday Directions

The entering of information for Vacation and Holiday pay is causing confusion. The following is a more detailed explanation of the entering of Vacation and Holiday pay.

Case 1 Vacation and Holiday is paid to the employee as additional wages. Enter the paycheck gross amount as part of the Gross Employee Pay This Project. Enter \$0.00 in the fringe benefit area and check the Vac/Hol/Dues in Gross Emp. Pay box.

This would be what you consider the employees Hourly Rate of Pay. You are paying it as part of the wages and would be factored as part of overtime/double-time factoring if hours worked. The hourly rates x the hours posted would equal the Gross Pay This Project field.

Case 2 Vacation and Holiday is included in the paycheck to calculate taxes but is paid to another fund (union) and thus deducted from the paycheck. Enter the paycheck gross amount as part of the Gross Employee Pay This Project. Enter the \$value in the fringe benefit area and check the box that says Vac/Hol/Dues Included in Gross Emp. Pay. In this scenario you would also show the deduction in the Deductions, Payments and Notes (taxes) section under the Vac/Dues field.

©LCPtrasker, Inc. - All Rights Reserved

Page 5 of 8

Case 3 Vacation and Holiday is not included in the paycheck. The Vacation and Holiday is only paid to a fund and taxes are assessed when paid. Enter the amount of the Vac/Hol in the field. Check the Vac/Hol/Dues Included in Gross Emp. Pay box. It would only be part of the Gross Pay This Project if the employee takes and is being paid for. So you are showing the Fringe value, however it is not sent to any fund (union) or assessed taxes until it is taken.

Case 4 Vacation and Holiday is accrued and taxes are assessed when paid. Enter the amount of the Vac/Hol/Dues in the field. This approach may not be accepted by some agencies.

Voluntary Pension and Medical Contributions

Voluntary Pension and Medical Contributions are additional payments to an approved pension and/or health care funds that the employee elects to take out of his/her Gross Employee Pay this period before taxes.

These voluntary contribution amounts are part of the Gross Employee Pay this period but some payroll systems do not show it as such. If your accounting system does not include these amounts in the Gross Employee Pay this period enter the hourly rates of such amounts in the fields provided in <u>Employee setup</u> so that you may use the Calculate Fringe button when doing Payroll Records entry.

Be sure <u>not</u> to include it as part of the health & welfare payments you make on the employees behalf (fringe benefits company pays into an entity/union that benefits the employee)

©LCPtracker, Inc. – All Rights Reserved

Page 6 of 8

Deductions, Payments and Notes

Enter your Deductions (taxes) and travel/subsistence pay as well as the Paycheck Amount (Net Pay), Check Number and any Notes for this current payroll you are entering.

The Paycheck amount and Check Number field is required field for the Payroll Record to save. The Check Number field will accept dd or DD for those that may have Direct Deposit vs. issuance of an actual Check. Once you are satisfied the data is accurate click the Save button.

If your agency is requiring you to report what 'other' deductions are you will also have to fill in this section in order for LCPtracker to save your payroll record. For Other Deduction Notes refer back to section – <u>Default</u> <u>Other Deduction Notes.</u>

©LCPtracker, Inc. – All Rights Reserved

Page 8 of 8

CONTRACTOR RELEASE DOCUMENT- JUNE 2018 - 2ND RELEASE

LCPtracker Excel Upload Template Updates

Contractor Database Area Affected: 1. Payroll Records Tab > Upload Records > Download Spreadsheet Template

We have updated the color coding and descriptions of the columns in the free Excel template we offer Contractors to upload payroll data into LCPtracker.

We have also included new columns regarding the new New York additional benefit information and YTD Accumulated Sick Pay

- CU (FringesProvidedByEmployer) This box is checked if the Fringes Paid/Provided to Employee by Employer -Specifically used for Payrolls in the State of New York
- CV (LocalUnionNumber) Used to enter Local/Union #, if fringes are Paid to a Union Specifically used for Payrolls
 in the State of New York
- CW (YTD SickPayTime) Used to enter accumulative hours employee has earned towards sick time

New Feature- Daily Reporter Settings

LCPtracker recommends contacting your LCP Project Manager for assistance on proper set up of this feature. If you are unsure who to contact, please reach out to the LCPtracker Support Team for assistance on locating your assigned Project Manager.

Contractor Database Area Affected: Daily Reporter Tab > Daily Reporter Settings

Daily Reporter Managers will now have the ability to enforce or disable different sections of the daily logs for specific projects.

Copy Employees Function Updated

Contractor Database Area Affected: Set Up Tab > Copy Employees

The Copy Employees function will no longer copy "unreconciled employees" from a database utilizing Daily Reporter to another account. Unreconciled employees are generated when an employee is manually entered into a daily log in the Daily Reporter function.

Paychex File Update

Contractor Database Area Affected: Upload files produced from Paychex

New column in Paychex file will allow federal exemptions to be uploaded into the system

Additional Supplemental Benefit Information in NYC CPR Form-041

Please note that this feature will only impact Contractors working on certain projects utilizing LCPtracker. It is not a database-wide change.

Contractor Database Area Affected: 1. Payroll Records Tab > Enter Records and on CPRs

The City of New York's certified payroll form requires that Contractors provide information specific to how an employee's supplemental/fringe benefits are paid. (Outlined in red below.)

	THE CITY (OF NEW	YORK • OFFICE OF	THE COMPTRO	LLER	• BUR	EAU OF	LABOR LAV	٧			
NAME OF PRIME CONTRACTOR			PAYRO TO BE SUBMITTED WIT	LL REPO		AYMENT			AGENCY			
NAME OF CONTRACTOR/SUBCONTRAC	TOR	ADDRES			PHONE #			1	PAYROLL#		TAX I.D. #	
CONTRACT REGISTRATION #		JOB COD	DE V	VEEK ENDING DATE		PROJECT	NAME & LO	CATION	l.			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(6)	(9)	(10)	(11)	(12)	(13)
NAME	LIST TRADE & CHECK		DAY AND DATE				SL	IPPLEMENTAL BENE	FITS			
ADDRESS LAST FOUR DIGITS OF	CLASSIFICATION JOURNEYMAN APPRENTICE (NYS DOL. REGISTERED)	T M E		TOTAL HOURS	BASE RATE OF PAY PER HOUR	TOTAL BAGE PAY	RATE PER HOUR	PAID TO (Local # f Union is checked)	TOTAL BENEFITS PAID	GROSS PAY	TOTAL TAX & OTHER DEDUCTIONS	NET PAY
SOCIAL SECURITY NUMBER	<u>H</u> ELPER		HOURS WORKED EACH DAY	,							DEDUCTIONS	
	J A DH	RT						U Loca# E O				

This functionality to comply with this reporting requirement has been added to the payroll entry form, specifically the "Fringes/Contributions paid to other" section, that Contractor's see when entering in an employee's weekly payroll record. The City of New York's certified payroll form provides three options: U = Union, E = Employee, and O = Other. The choice(s) you make on this screen will transfer to the correlating "Paid To" line.

A checkmark in the checkbox for "Fringes Paid to Union? Union Local #" will auto-populate the "U" row on the Supplemental Benefits payment information section. A free-form field next to the checkbox will allow for the Contractor to insert their Union Local name/# specific to that employee. This will then list that Union Local name/# on the "U" row. By checking this box, you are stating that the supplemental/fringe benefits for that employee are being paid to their specific Union.

/ac/Hol/Dues He	ealth & Welf	Pension	All Other	Training	Voluntary Contributions for all Projects	□ Vac/Hol/Dues Included in Gross Emp. Pay □ Some or All Fringes Paid to Employee
0.000 O		0.000 More	0	0	Pension Medical	Voluntary Contributions Included in Gross Emp. Pay Calculate Fringes

	THE CITY (OF N	EW YORK • OFFICE OF			• BUR	EAU OF	LABOR LAW				
NAME OF PRIME CONTRACTOR			PAYRO TO BE SUBMITTED WI	TH REQUISITION		AYMENT			AGENCY			
NAME OF CONTRACTOR/SUBCONTRAC	CTOR	ADDE			PHONE #				PAYROLL		TAX I.D. #	
CONTRACT REGISTRATION #		JOB (CODE	WEEK ENDING DATE		PROJECT	NAME & LC	CATION				
(1) (2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
NAME	LIST TRADE & CHECK		DAY AND DATE				3	JPPLEMENTAL BENE	FITS		1	
ADDRESS LAST FOUR DIGITS OF SOCIAL SECURITY NUMBER	CLASSIFICATION JOURNEYMAN APPRENTICE (NYS DOL REGISTERED) HELPER	M E	HOURS WORKED EACH DA	TOTAL HOUR	BASE RATE OF PAY PER HOUR	TOTAL BASE PAY	RATE PER HOUR	PAID TO (Local # f Union is checked)	TOTAL BENEFITS PAID	GROSS PAY	TOTAL TAX & OTHER DEDUCTIONS	NET PAY
	DJ DA DH	RT OT						Laborer's ULoca# 731 E				

The next row, "E", will automatically transfer to the certified payroll form if any amount is entered in to the "Rate in Lieu of Fringes" field on the payroll entry screen. (Outlined below in red.) By entering an hourly amount in this section, you are stating that the employee has supplemental/fringe benefits paid/provided by the employer to the employee in cash. This will insert "X" for "Employee" on the certified payroll report

	ADDRESS	TO BE SUBMITTED	ROLL WITH REG			AYMENT			AGENCY PAYROLL #		TAX I.D. #	
	JOB CODE	E	WEEK EN	DING DATE		PROJECT	NAME & LO	CATION				
(2)	(3)	(4)		(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
ADE & CHECK SSIFICATION JRNEYMAN PRENTICE DL REGISTERED)		DAY AND DATE		1			St	PPLEMENTAL BENE	rits			
	T M E		(à	TOTAL HOURS	BASE RATE OF PAY PER HOUR	TOTAL BASE PAY	RATE PER HOUR	PAID TO (Local#if Union is checked)	TOTAL BENEFITS PAID	GROSS PAY	TOTAL TAX & OTHER DEDUCTIONS	NET PA
ELPER		HOURS WORKED EAC	H DAY									
	RT							U Local#				
	ОТ							0				

Finally, a checkmark in the checkbox for "Fringes Paid / Provided to Employee by Employer" will auto-populate the "O" row on the Supplemental Benefit payment information section. By checking this box (outlined below in red), you are stating that the employee has supplemental/fringe benefits paid/provided by the employer to the employee. This will insert "X" for "Other" on the certified payroll report.

Vac / Holl / Dues 0.000 More	Health & Welf.	Pension 0.000 More	All Other	Training 0	Voluntary Contributions for all Projects Pension Medical 0.000 0	■ Vac/Hol/Dues Included in Gross Emp. Pay ■ Some or All Fringes Paid to Employee ■ Voluntary Contributions Included in Gross Emp. Pay Calculate Fringes
						Fringes Paid/Provided to Employee by Employer More

		PAYF TO BE SUBMITTED	ROLL WITH REC			AYMENT			AGENCY			
	ADDRESS		77777775	01011101	PHONE #				PAYROLL #		TAX I.D. #	
	JOB CODE		WEEK END	ING DATE		PROJECT	NAME & LC	CATION				
(2)	(3)	(4)		(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
ADE & CHECK		DAY AND DATE	J				SI	PPLEMENTAL BENE	ITS			
ADE & CHECK SSIFICATION URNEYMAN PRENTICE L REGISTERED	T I M E		b	TOTAL HOURS	BASE RATE OF PAY PER HOUR	TOTAL BASE FAY	SE PER	PAID TO (Local # if Union is checked)	TOTAL BENEFITS GROSS PAY	TOTAL TAX & OTHER DEDUCTIONS	NET PAY	
LELPER		HOURS WORKED EACH		1000	750	2000		1				
	RT							Li Lotair				
	ОТ							O ×				

/ac / Hol / Dues 0.000 Agre	Health & Welf.	Pension 0.000 More	All Other	Training 0	Voluntary C for all Proje Pension 0.000	Contributions ects Medical	Vac/Hol/Dues Included in Gross Emp. Pay Some or All Fringes Paid to Employee Voluntary Contributions Included in Gross Emp. Pay Calculate Fringes
							Extract Date (Described to Employee by Employee More
							Fringes Paid to Union? Union Local # Laborer's 731

SUBCONTRACTOR SETUP

You will set up the subcontractor below you, and each contractor is responsible for setting up their own subs. Once you've set up your sub, they'll log into their account and then set up any subs beneath them. Their subs will then set up their own subs, and so on and so forth.

Contractor Set Up is a two-step process:

Step 1: Contractor Setup > Add/Edit Contractor

To add, simply fill in the data. Complete the data fields with information provided by your subcontractor. If it is a new entry, ignore the **Select a contractor to edit drop down**. If this is an existing user, you may have read-only access to their information.

Some contractors may already be a user of LCPtracker under another agency database. Ask your subcontractor if they are a current user of LCPtracker. If they are, ask them for their User ID that they currently use to log into the LCPtracker system. You will still be setting this company up with a "new" account under the Agency you are working in. Set them up with the same user ID under your Agency, and the system will automatically link their accounts for them. This prevents them from having to use multiple user ids.

The field marked Contractor License No. or 10-digit Phone Number is the field that ultimately becomes the user's ID number, and where you'll enter their existing user ID to link accounts if they have them.

Continue to enter in the rest of the required information on the Subcontractor Setup page and Save

The **email data field is critical** as this is how the LCPtracker Program is designed to communicate with system users. Please be sure the email address supplied is correct prior to saving the information to the database. Red asterisks fields are required in order for the system to **Save** information. Some Agencies may have additional requirements. When you are satisfied the information is correct, click **Save**. You will receive a pop-up telling you "Contractor has been sent an email notifying them. Don't forget to assign this Contractor to project".

LCPtracker system will automatically email the subcontractor their User ID and Temporary Password.

Step 2: Contractor Setup > Contractor Assignment

The next step after you have setup your subcontractors in the system is to assign them to the project(s).

You can click on Add New Assignment, on the top or the bottom

Select a department – *Optional*, some agencies do not use this selection. You may choose the 'Unassigned Contractors' to make the list shorter to view.

Select a project - You need to choose the Project that you are assigning your Subcontractor to.

Contractor to be assigned – Choose the Subcontractor you need to assign to Project as your Subcontractor. This is usually the Subcontractor you just set up in the system. Some however are

already in the system under this Agency and you just need to assign them to the Project as your Subcontractor. (See next screen shot).

Start Date – Required by some Agencies, typically the date that your Subcontractor is to/or has started working on the project.

End Date - Optional field, some agencies want this information.

Contract ID – *Optional field*, some agencies want this information. The Contract ID is the ID of the contract between you and the subcontractor. If you do not have a Contract ID or numbering system be sure to assign a unique ID to this contract.

Responsibility Code - Optional field, some agencies want this information.

Contract Amount – *Optional field*, some agencies want this information. This is the amount of the contract between you and your subcontractor.

Notes - Optional field, some agencies want this information or you may choose to add your own notes.

After you have made your choices from the drop down and entered any required information, be sure to **Save**. Once you've saved, your sub will be sent a second email informing them they've been assigned to a project.

You will now see a saved **contractor assignment** listed in the Contractor Assignment Screen. The Date Assigned is a system generated Date Stamp. This is the date that the Contractor was assigned to the project.

MULTIPLE CONTRACTOR ASSIGNMENTS

If you're finding a subcontractor has an existing account:

But you're not able to find them when assigning them to a project:

Chances are they already have an existing assignment to that project under a different general contractor. In this situation, you'll need to create a new account for them under subcontractor setup, being sure to use a slightly different company name and user ID:

Then you'll be able to assign the new account as a sub to you:

FRINGE BENEFITS

Fringe benefits explanation from the DOL (Department of Labor) website - http://www.dol.gov/whd/foremployers.htm

FRINGE BENEFITS ARE:

Contributions irrevocably made to a trustee or third party pursuant to a bona fide fringe benefit fund plan or program. The rate of costs incurred in providing bona fide fringe benefits pursuant to an enforceable commitment to carry out a financially responsible plan or program, which was communicated to the employees in writing.

Examples:

- Life insurance
- Health insurance
- Pension
- Vacation
- Holidays
- Sick leave
- Other "bona fide" fringe benefits

However, payments required by federal, state or local law are not fringe benefit contributions. Such payments required to fund Social Security, unemployment compensation and workers' compensation programs, as required by law, do not count as fringe benefits.

Any question concerning what type of fringe benefits is "bona fide" should be referred to the <u>Wage and</u> Hour Division.

Here are two examples of how some Wage Rate Sheet/Wage Decision or State pages may look, please note that these are only examples, your state may look different.

Either of these examples the required Basic Hourly rate or Base pay is the highlighted Blue value. This would be the minimal hourly rate you would have to pay the employee for doing this trade. The other values would be considered Fringes, either to a bona fide fringe benefit plan, cash fringe, or combination of both.

Example A:	Rates	Fringes	Example	B: [F	ringes add	ed up togeth	er = 13.10]	
Plumber	\$ 30.27	\$ 13.10	Basic Hourly Rate	Health & Welfare	Pension	Vacation/ Holiday	Training	Other	Total Hourly Rate
			\$30.27	\$7.55	\$3.04	\$1.05	\$0.64	\$0.82	\$43.37

Entering hourly fringe rates either in the Add/Edit Employee section - Default Hourly Paid Fringes (As paid to Fund on behalf of employee) or using the Fringe Benefit Maintenance table.

SET UP > ADD/EDIT EMPLOYEE Example A: Default Hourly Paid Fringes (As paid to Fund on behalf of employee) Vac / Hol / Dues Health & Welfare Pension All Other Training 13.10 Example B: Default Hourly Paid Fringes (As paid to Fund on behalf of employee) Vac / Hol / Dues Health & Welfare Pension All Other Training 1.05 7.55 3.04 0.82 0.64 SET UP > FRINGE BENEFITS MAINTENANCE Example A: Default Hourly Paid Fringes (As paid to Fund on behalf of employee) Vac / Hol / Dues All Other Health & Welf. Pension Training 0 0 0 13.10 0 Example B: Default Hourly Paid Fringes (As paid to Fund on behalf of employee) Vac / Hol / Dues Health & Welf. Pension Training All Other 1.05 7.55 3.04 0.64 0.82

PAYROLL RECORD ENTRY SCREEN

Example A - Shows as a company that has a bona fide fringe benefit package. The employee receives \$30.27 /hour for base pay. The remainder of dollar values the company pays/sends to a bona fide fringe benefit plan. All values count towards the Total Hourly Rate or Total Package requirement.

Example B – Shows the same value is going to a bona fide plan, it's just not broken down. It is suggested that you do break down if at all possible, most agencies wish to see the per bona fide fringe breakdown.

ross Employee ay This Project (Usually No	Wages Paid of Fringes (Cash Frin	es (Total Projects ringes) (Sum of all checks		These f	ields are Hou	rly rate fields (Usually No Fri	nges)	Rate in Lieu of Fringes (Cash Fringes)		
Fringes)	Sustrial	. ,	entered on deductions)	Base Hourl		Overtime Hourly	Double				
1150.260	0.000		1738.640	30,270		0.000	0.000)	0.000		
Classifications						_	_	_			
Hours Worked E	ach Day for T	his Project C	Only								
	Sunday 12/4/2016	Monday 12/5/2016	Tuesday 12/6/2016	Wednesday 12/7/2016	Thursday 12/8/2016	Friday 12/9/2016	Saturday 12/10/2016	Total Hours			
Regular Time	0.00	8,00	7.00	7.00	8.00	8.00	0.00	38.00	30.27 basy rate		
Overtime at 1.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	+13.10 hourly all other fringe		
Double-Time	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	= 43.37 total hourly rate		
Total	0.00	8.00	7.00	7.00	8.00	8.00	0.00	38.00			
Vac / Hol / Dues 0.000 More		,	\$13.10 n All Other 314.440	Training	Volum	ntary Contribut Projects ion Medi	ions	Some or All	es Included in Gross Emp. Pay I Fringes Paid to Employee contributions Included in Gross Emp. Pay Inges		

Example C – Shows a combination of both a bona fide fringe benefit plan as well as paying a cash fringe in order to meet the Total Hourly Rate / Total Package requirement.

Example D - Does not have a bona fide fringe benefit plan and so the entire fringe is going to the employee in cash fringe / rate in lieu of fringe.

Gross Employee Pay This Project (Usually No	This Project of Fringes (Total Isually No Cash Fringes) (ross Pay All Projects n of all checks	These f	ields are Hou	ırly rate fields (Usually No Frir	nges)	Rate in Lieu of Fringes (Cash Fringes)	
Fringes)	000.11.	Ŭ ,	entered on eductions)	Base Hourl		Overtime Hourly	Doubl Hou		· ····gooy	
1126.700	497.800	0 17	738.640	30.270		0.000	0.000)	13.100	
→ Classifications	_	_	_	_	_	_	_	_	_	
▼ Hours Worked E	ach Day for T	This Project Or	ıly							
	Sunday 12/4/2016	Monday 12/5/2016	Tuesday 12/6/2016	Wednesday 12/7/2016	Thursda/ 12/8/2016	Friday 12/9/2016	Saturday 12/10/2016	Total Hours		
Regular Time	0.00	8.00	7.00	7.00	8.00	8.00	0.00	38.00	30.27 bas	v rate
Overtime at 1.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	+13.10 ho	irly cash fringe
Double-Time	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	= 43.37 tot	al hourly rate
Total	0.00	8.00	7.00	7.00	8.00	8.00	0.00	38.00		
▼ Fringes / Contrib	outions paid to	o others (not er	mployee) <u>for Th</u>	nis Project Only	∠(Rate Time	s the # of Hour				
Vac / Hol / Dues 0.000 <u>More</u>	Health & W 0.000	/elf. Pension 0.000 More	All Other	Training 0.000			ical	Some or All		

VACATION/HOLIDAY/DUES OPTIONS

The following is a more detailed explanation of the entering of Vacation and Holiday pay.

Case 1 Vacation and Holiday is paid to the employee as additional wages. Enter the paycheck gross amount as part of the Gross Employee Pay This Project. Enter \$0.00 in the fringe benefit area and check the Vac/Hol/Dues in Gross Emp. Pay box.

This would be what you consider the employees Hourly Rate of Pay. You are paying it as part of the wages and would be factored as part of overtime/double-time factoring if hours worked. The hourly rates x the hours posted would equal the Gross Pay This Project field.

Case 2 Vacation and Holiday is included in the paycheck to calculate taxes but is paid to another fund (union) and thus deducted from the paycheck. Enter the paycheck gross amount as part of the Gross Employee Pay This Project. Enter the \$value in the fringe benefit area and check the box that says Vac/Hol/Dues Included in Gross Emp. Pay. In this scenario you would also show the deduction in the Deductions, Payments and Notes (taxes) section under the Vac/Dues field.

Case 3 Vacation and Holiday is not included in the paycheck. The Vacation and Holiday is only paid to a fund and taxes are assessed when paid. Enter the amount of the Vac/Hol in the field. Check the Vac/Hol/Dues Included in Gross Emp. Pay box. It would only be part of the Gross Pay This Project if the employee takes and is being paid for. So you are showing the Fringe value, however it is not sent to any fund (union) or assessed taxes until it is taken.

<u>Case 4</u> Vacation and Holiday is accrued and taxes are assessed when paid. Enter the amount of the Vac/Hol/ Dues in the field. This approach may not be accepted by some agencies.

ADDRESS VALIDATION

LCPtracker has designed a tool that will help ensure the accuracy of employee address data. Accurate employee data is vital to promote workforce development through establishing local hiring employment opportunities.

These changes will not have much of an impact on the work required to submit payroll information through LCPtracker. They will however have a significant positive impact on the quality of reporting generated.

You will now see a "Validate Address" button within the **Add/Edit Employee** section of your account. Depending on the agency you're reporting to, you may be required to validate the addresses entered on file.

From the Add/Edit Employee Screen you will see the Validate Address Button:

When selected, the address entered will be compared to the US Postal Service database and a possible match may be suggested:

If you select **Yes**, then the data will now appear in the address fields in the employee screen and **Address Validated** will show in green:

Be sure to click Save:

If the agency you are reporting to *requires* employee addresses to be validated, you may receive this message when attempting to **Save** an employee's profile:

If you select "No" the employee profile will not be saved.

If the you select "Yes" the employee record will be saved, however a Payroll Notice will trigger that will prevent certification. Your Project Administrator will need to determine if the employee should be exempt from Address Validation.

ADDRESS VALIDATION EXEMPTION

A situation could arise where an employee's address is valid but it is not found within the USPS database. This could be due to several factors including employees who live in rural areas, or who's homes are newly built and have not been established with the USPS database.

If you have determined that the address entered is valid, but the system does not validate and provide a possible match, you will need to contact your Project Administrator to request an exemption. Their contact information is available within the **Projects** tab > click **Show Info** next to the project name.

It is also suggested that you contact the USPS Address Management System. They will be able to determine if the address needs to be added to their database.

CONTACTING USPS

Go to https://ribbs.usps.gov/locators/find-ams.cfm to locate the Address Management System Office that serves the zip code for the address provided.

Here is an example:

These are the results returned (SAMPLE ONLY):

The Address Management System office that serves 92648 can be contacted at:

ADDRESS MANAGEMENT SYSTEMS UNITED STATES POSTAL SERVICE 3101 W SUNFLOWER AVE SANTA ANA CA 92799-9316

Phone: (714) 662-6330 Fax: (714) 327-6505

Contact the Phone Number provided and they will check to see if the address is valid. If they determine that it is a valid address they will need to update their database which can take 2-5 weeks depending on where they are in the release cycle.

APPENDIX A - SITE INVESTIGATION REPORT

North 12th Street Complete Streets Project City of Sacramento, Sacramento County, California

Preliminary Site Investigation-Aerially Deposited Lead Study

Prepared for:

City of Sacramento Department of Public Works 915 I Street Sacramento, CA 95814 (916) 808-7620

Prepared by:

WRECO 1243 Alpine Road, Suite 108 Walnut Creek, CA 94596 (925) 941-0017

This page intentionally left blank

North 12th Street Complete Streets Project City of Sacramento, Sacramento County, California

Preliminary Site Investigation-Aerially Deposited Lead Study

Submitted to: City of Sacramento, Department of Public Works

This report has been prepared by or under the supervision of the following Professional Geologist. The Registered Professional Geologist attests to the technical information contained herein and has judged the qualifications of any technical specialists providing environmental data upon which recommendations, conclusions, and decisions are based.

Melissa McAssey

Professional Geologist #8132

sun susen

Data

This page intentionally left blank

Table of Contents

-	et DIC	of Contents	
E	xecutiv	re Summary	iii
1		INTRODUCTION	1
	1.1	Project Description.	
		1 Principal Project Elements	
		2 Temporary Project Construction Components	
		3 Alternative Trail Connection	
		Current Land Use	
	1.3	ISA Findings and Recommendations.	
2		SITE SETTING	
	2.1	Project Study Area	
	2.2	Topography	
	2.3	Regional Geology	
	2.4	Local Geology and Soils	
	2.5	Naturally Occurring Asbestos	
	2.6	Groundwater Hydrology	
	2.7	Surface Water Hydrology	
3		PSI-ADL STUDY	
	3.1	Soil Sampling Methods and Procedures	
	3.2	Analytical Results	
	3.3	Statistical Evaluation - 95% Upper Confidence Limit	
	3.4	Hazardous Waste Determination Criteria	
	3.5	Results and Findings	
	3.6	Conclusions and Recommendations	
	3.6.	1 Waste Management	30
		2 Worker Safety	
4		PSI-ADL RECOMMENDATIONS SUMMARY	
5		LIMITATIONS	
6		REFERENCES	
F	igure		
		. Vicinity Map	6
		Project Area Location	
	_	Regional Geologic Map	
		Sacramento Valley Groundwater Basin and Subbasins	
		Sacramento River Hydrologic Region	
		Soil Boring Locations SB-1 through SB-3, North 12th Street, Sacramento	
	_	Soil Boring Location SB-4, North 12th Street, Sacramento	
	_	Soil Boring Locations SB-5 through SB-9, North 12th Street, Sacramento	
		Soil Boring Locations SB-10 through SB-12, North 12th Street, Sacramento	
		0. Soil Boring Locations SB-10 through SB-12, North 12th Street, Sacramento	
		1. Lead CA WET Lab Results for Boring Locations SB-5, SB-6, and SB-7	

Preliminary Site Investigation-Aerially Deposited Lead Study
North 12th Street Complete Streets Project
City of Sacramento, Sacramento County, California

WRECO P18121

Tables	
Table 1. PSI - ADL Soil Sample Collection and Analyses	16
Table 2. Screening Level Summary - Lead Sample Results	21
Table 3. Screening Level Summary - Composite Sample Results	22

Appendices

Appendix A City of	Sacramento	Encroachment	Permit
--------------------	------------	--------------	--------

Appendix B Laboratory Reports

Appendix C ProUCL 5.1 - 95% Upper Confidence Limit Calculations

August 2019 Pagq594 of 792

WRECO P18121

Executive Summary

The City of Sacramento proposes construction of a Complete Streets Project (Project) along North 12th Street (St), from the northern extent at Richards Boulevard (Blvd) to the southern extent at H St, in Sacramento, California. The Project proposes to construct new sidewalks, landscaping, aesthetic improvements, street and pedestrian lighting, and traffic signal improvements (City of Sacramento, 2019). The Preliminary Site Investigation (PSI) – Aerially Deposited Lead (ADL) Study was performed to verify the presence/absence of Recognized Environmental Conditions (REC) outlined in the Initial Site Assessment Report (Blackburn Consulting 2017), to evaluate the available options for soil disposal or reuse, and to provide guidance for waste management and worker safety during construction.

This report presents the results of the PSI-ADL Study conducted by WRECO for the Project corridor where 15 boring locations were sampled along North 12th St within the City of Sacramento's right-of-way. A subsurface investigation was conducted by WRECO staff on January 17, 2019, that included collecting shallow soil samples from 15 borings in areas proposed for excavation and soil disturbance along the Project corridor.

Fifteen shallow soil borings were sampled along the proposed Project corridor, North 12th St, from H St to Richards Boulevard, and 42 soil samples (at depths of 0-1 feet, 1-2 feet, and 2-3 feet) were analyzed for lead and pH using the Environmental Protection Agency (EPA) Method 6010B and 9045, respectively. Detectable lead concentrations ranged from 2.8 to 470 milligrams per kilogram (mg/kg). The pH of the 42 samples analyzed ranged from 6.22 to 10.23. Eleven soil samples out of 42 had lead concentrations exceeding 10 times the Soluble Threshold Limit Concentration (STLC) value of 5 milligrams per liter (mg/L) but were below the Total Threshold Limit Concentration (TTLC) value (1,000 mg/kg). Nine of the 11 soil samples were analyzed for California Waste Extraction Test (CA WET) to evaluate the STLC concentrations (2 soil samples did not have enough remaining soil to be analyzed). Laboratory results indicated that 3 of the 9 soil samples analyzed had CA WET lead concentrations above the STLC value of 5 mg/L. These concentrations are representative of the shallow soil in the borings they were collected from and meet the criteria for California Hazardous Waste. The three samples were analyzed for toxicity characteristic leaching procedure (TCLP) to determine if the lead concentrations exceeded federal standards. The laboratory results indicated that lead concentrations were below the TCLP value (5 mg/L), and the shallow soil does not meet criteria for RCRA Hazardous Waste. Based on the exceedances and waste classification for Borings SB-5 and SB-6 (CA Hazardous), the intersection of N 12th St at B St and Dos Rios St, will need to be managed during construction activities.

Statistical methods were applied to the total lead data to evaluate the upper confidence limit (UCL) of the arithmetic means of the total lead concentrations for each sampling depth. The total lead data were treated as one sample population for statistical evaluation of the 95% UCL. The UCL calculations were completed for each of the three depth ranges, 0-1 feet, 1-2 feet, and 2-3 feet bgs, yielding the average detectable lead concentration results of 56.77, 43.02, and 5.94 mg/kg, respectively. Except for specific borings discussed in the summary table below, the shallow soil can be reused based on lead concentrations, since the 95% UCLs are less than the TTLC of 1,000 mg/kg and below the California EPA soil guideline of 80 mg/kg.

August 2019 Paga 595 of 792

Eight composite soil samples had additional testing performed, that included organochlorine pesticides (EPA Method 8081A); polynuclear aromatics hydrocarbons (PNA) (EPA Method 8270C); total petroleum hydrocarbons (TPH) as gasoline (-g) and as diesel (-d) (EPA Method 8015M); benzene/toluene/ethylbenzene/xylenes (BTEX) and volatile organic compounds (VOC) (EPA Method 8260B); polychlorinated biphenyls (PCB) (EPA Method 8082A); CAM-17 metals and mercury (EPA Method 6010 and 7471B). All concentrations of Pesticides, PNAs, TPH-g, TPH-d, BTEX, VOCs, and PCBs were below detection limits, except for two low detectable concentrations of TPH-d in composite samples SB-6 (5.5 mg/kg) and SB-15 (4.7 mg/kg).

Composite soil samples SB-12, and SB-15 were analyzed for CAM-17 metals and had detectable arsenic concentrations of 5.3 and 8.0 mg/kg, respectively, which are below the STLC limit (10 times the STLC of 5 mg/L). The soil in the areas near SB-12 (N 12th St/Sunbeam Ave) and SB-15 (N 12th St/Richards Blvd) may be pre-classified as Non-Hazardous. These samples did exceed the ESLs and CHHSLs for residential, commercial/industrial, and construction worker exposure limits (cancer risk). Therefore, the soil in the areas near SB-12 (N 12th St/Sunbeam Ave) and SB-15 (N 12th St/Richards Blvd) need to be managed for worker safety during construction.

Composite soil samples SB-12 and SB-15 had detectable chromium concentrations of 43 and 49 mg/kg, respectively, which are below the STLC limit (10 times the STLC of 5 mg/L). The soil in the areas near SB-12 (N 12th St/Sunbeam Ave) and SB-15 (N 12th St/Richards Blvd), may be preclassified as Non-Hazardous. These samples did exceed the ESLs and CHHSLs for residential, commercial/industrial, and construction worker exposure limits (Cr VI - cancer risk); however, the concentrations are below ESLs and CHHSLs for Cr III and VI – non-cancer hazard (there are no values for total chromium). Therefore, the soil in the areas near SB-12 (N 12th St/Sunbeam Ave) and SB-15 (N 12th St/Richards Blvd), need to be managed for worker safety during construction.

The lead concentrations for composite sample SB-5 was 180 mg/kg (*TTLC*), 5.2 mg/L (*STLC*), and 0.53 mg/L (*TCLP*). The lead concentrations for samples SB-5-0-1, SB-5-1-2, and SB-5-2-3 are 73 mg/kg (*TTLC*)/1.8 mg/L (*STLC*); 72 mg/kg (*TTLC*)/13 mg/L (*STLC*)/ND (*TCLP*); and 100 mg/kg (*TTLC*) (insufficient amount of sample to run additional STLC analyses), respectively. Composite sample SB-5 and sample SB-5-1-2 can be pre-classified as California Hazardous. The lead concentrations for composite sample SB-5 exceeded the ESLs and CHHSLs for residential and construction worker exposure, and sample SB-5-2-3 exceeded the ESLs and CHHSLs for residential exposure. The soil in the area near SB-5 may be pre-classified as California Hazardous and needs to be managed for worker safety during construction.

The contractor(s) should prepare a project-specific Lead Compliance Plan (CCR Title 8, §1532.1, "Lead in Construction" standard) to minimize worker exposure to lead-containing soil for areas specified along N 12th St (SB-5 and SB-6). The plan should include protocols for environmental and personnel monitoring, requirements for personal protective equipment, and other health and safety protocols and procedures for the handling of lead-containing soil.

August 2019 Pagr_V596 of 792

A summary of this study's recommendations is presented below:

Identified RECs and Recommendations

Description	Evidence of Potential REC	Recommended Action(s)
Shallow soil with lead concentrations exceeding the STLC limit (ADL)	Soil borings SB-5-1-2, SB-5 (Composite), and SB-6-0-1 had lead concentrations above the STLC limit (5 mg/L), which at levels that classifies them as "California Hazardous Waste,". but not "RCRA Hazardous."	The shallow soil from the intersection of B St and N 12th St, near SB-5 and SB-6, can be pre-classified as (Non-RCRA) California Hazardous. Soil from these areas will need to be segregated in stockpiles and disposed of at a Class I Landfill (per Section 25117/25141 of the California Health and Safety Code).
Shallow soil with lead concentrations exceeding RWQCB ESLs (ADL)	The soil borings SB-7-0-1 and SB-7-1-2 had lead concentrations that exceeded the residential and construction worker ESLs for lead. Soil sample SB-7-1-2 also exceeded the exposure to construction workers ESL.	The shallow soil from the area represented by boring SB-7-0-1 and SB-7-1-2 will not be reused at any off-site locations. The soil can be reused for commercial/industrial purposes or disposed at a Class II or Class III Landfill.
Shallow soil with lead below limits (ADL)	All the other soil borings along the N 12th St corridor had lead concentrations below the TTLC/STLC and RWQCB ESLs for residential, commercial/industrial land use, and exposure to construction workers and considered Non-Hazardous.	The shallow soil from the areas near the other borings had lead concentrations that were below all limits, and can be reused along the corridor or disposed at a Class III Landfill.
Shallow soil samples with arsenic and chromium	The composite samples for borings SB-12 and SB-15 were analyzed for CAM-17 metals, among other COCs, and had detectable arsenic concentrations of 5.3 and 8.0 mg/kg, respectively, which are above all the RWQCB ESLs. In addition, composite samples SB-12 and SB-15 also had detectable chromium concentrations of 43 and 49 mg/kg, respectively, which are above all the RWQCB ESLs. for residential use, commercial/industrial use, and construction worker safety. The arsenic and chromium levels at SB-12 and SB-15 do not exceed the TTLC/STLC limits.	The shallow soils from the areas near represented by SB-12 and SB-15 can be pre- classified as Non-Hazardous, and can be disposed at a Class III Landfill., consistent with CCR Title 22 §66262.11 waste classification.
Yellow Traffic Stripe Removal	Potential lead and heavy metals associated with pavement striping. Implementation of improvements may require the removal and disposal of yellow traffic striping and pavement marking materials (paint, thermoplastic, permanent tape, and temporary tape). Yellow paints made prior to 1995 may exceed hazardous waste criteria under Title 22 CCR and require disposal in a Class I disposal site.	Abate striping on N 12th St prior to construction following DOT SSPs: Caltrans SSP 14-11.12 (10/19/2018) - Remove Yellow Traffic Stripe and Pavement Marking with Hazardous Waste Residue - Requires proper management of hazardous waste residue and a lead compliance plan. Caltrans SSP 84-9.03C (10/19/2018) - Remove Traffic Stripes and Pavement Markings Containing Lead - Requires a lead compliance plan for removal when residue is non-hazardous. Used for new yellow paints and all other colors of paint.

August 2019 Page 597 of 792

Acronyms

40 CFR Chapter 40 of the Code of Federal Regulations

ADA Americans with Disabilities Act

ADL aerially deposited lead above mean sea level

Ave avenue

bgs below ground surface

Blvd boulevard

BTEX benzene/toluene/ethylbenzene/xylenes CA WET California Waste Extraction Test

Caltrans California Department of Transportation

CCR California Code of Regulations

CHHSLs California Human Health Screening Levels

City City of Sacramento

CLS California Laboratory Services
COCs Contaminants of Concern
County Sacramento County
DPT Direct Push Technology

DTSC Department of Toxic Substances Control

EPA Environmental Protection Agency ESLs Environmental Screening Levels

ft feet I- Interstate

IDW investigation derived waste
ISA Initial Site Assessment
LUC Land Use Covenant
mg/kg milligrams per kilograms
mg/L milligrams per liter

N North

ND not detected

NOA Naturally Occurring Asbestos PAH polycyclic aromatic hydrocarbons

PCB polychlorinated biphenyls PG Professional Geologist

PNA polynuclear aromatic hydrocarbons

Project North 12th Street Complete Streets Project

PSI Preliminary Site Investigation

RCRA Resource Conservation Recovery Act REC recognized environmental condition

ROW right-of-way

RWQCB Regional Water Quality Control Board SMUD Sacramento Municipal Utility District

SSP Standard Special Provisions

St street

August 2019 Page 598 of 792

Preliminary Site Investigation-Aerially Deposited Lead Study North 12th Street Complete Streets Project City of Sacramento, Sacramento County, California

WRECO P18121

STLC	soluble threshold limit concentration
TCE	temporary construction easements

TCLP toxicity characteristic leaching procedure

TPH total petroleum hydrocarbons

TPH-d total petroleum hydrocarbons as diesel TPH-g total petroleum hydrocarbons as gasoline TPH-mo total petroleum hydrocarbons as motor oil

TTLC total threshold limit concentration

UCL upper confidence limit UPRR Union Pacific Railroad

UST underground fuel storage tank VOCs volatile organic compounds

August 2019 Page 599 of 792

This page intentionally left blank

1 INTRODUCTION

This report presents the results of the Preliminary Site Investigation (PSI)—Aerially Deposited Lead (ADL) Study conducted by WRECO, on behalf of the City of Sacramento (City) for the North (N) 12th Street (St) Complete Streets Project (Project), in Sacramento County (County), California. The Project corridor is located approximately 80 miles east of San Francisco and 85 miles west of Lake Tahoe. Sacramento is a major transportation hub, the point of intersection of transportation routes that connect Sacramento to the San Francisco Bay area to the west, the Sierra Nevada Mountain Range and Nevada to the east, Los Angeles to the south, and Oregon and the Pacific Northwest to the north. The City is bisected by several major freeways including Interstate 5 (I-5) that traverses the state from north to south; Interstate 80 (I-80), which provides an east-west connection between San Francisco and Reno; and U.S. Highway 50 which provides an east-west connection between Sacramento and South Lake Tahoe. The Project vicinity map is shown in Figure 1, and the Project area location is shown in Figure 2.

A subsurface investigation was conducted by WRECO staff on January 17, 2019, that included shallow soil sampling of 15 borings in areas proposed for excavation/soil disturbance along the N 12th St Project corridor. The PSI-ADL Study was performed to verify the presence/absence of RECs outlined in the Initial Site Assessment (ISA) Report (Blackburn Consulting 2017), to evaluate the available options for soil disposal or reuse, and to provide guidance for waste management and worker safety during construction.

1.1 Project Description

The purpose of the proposed Project is to improve and transform the N 12th St/12th St Corridor from Richards Boulevard south to H Street into a complete street. The Project corridor is located within both the City's River District and Alkali Flat/Mansion Flats Neighborhoods. North 12th St is the major transportation artery for access to downtown from North Sacramento. The Project would incorporate the River District's vision of transforming the existing light industrial and commercial area into an urban community of diverse uses. Improvements are proposed within an alignment along N 12th St, improving and transforming the N 12th St corridor into a Complete Street with lane reduction and the installation of a Class IV separated bikeway along the west side of N 12th St. The proposed Project also includes the construction of new sidewalks, landscaping, bus landings, street and pedestrian lighting, and a new traffic signal at the Richards Blvd and Sunbeam Avenue (Ave) intersection. While N 12th Street currently serves as a significant transit corridor for both bus and light rail, the proposed alternative transportation improvements are needed to further activate mobility on this critical roadway link. Right-of-way (ROW) acquisition is anticipated for the Project. The area of direct physical construction for the Project corridor would generally be limited to the western-most lane of 12th St/N 12th St, as well as limited peripheral areas.

The improvements proposed for this Project include:

- Vehicle lane reduction from 4 to 3 travel lanes
- 10-ft, two-way Class IV bikeway
- 4-ft to 8-ft striped buffer with flexible posts
- Green paint at conflict points
- · Sidewalk, driveway, and curb ramp improvements

August 2019 Page₁601 of 792

- Signal and lighting improvements
- Lighting enhancements at Union Pacific Railroad (UPRR) underpass
- · Landscape and aesthetic improvements

The Project plans to convert the westernmost travel lane on N 12th St from Richards Boulevard to H St into a two-way cycle track with streetscape and provides a direct connection from the American River Two Rivers Trail to Downtown Sacramento. The Project will make N 12th St accessible for all modes of transportation, provide bi-directional bicycle access between the River District and Downtown, enhance safety along the corridor, improve air quality, encourage economic development, make active transportation modes of transportation convenient for residents, and improve the aesthetics of this gateway to the central part of the City.

1.1.1 Principal Project Elements

Bike Facilities

To close the existing gap in the bicycle network from the existing Two Rivers Trail to Downtown Sacramento, a two-way Class IV separated bikeway would be installed within the western-most vehicle travel lane along N 12th St beginning from C St northwards to Sunbeam Ave. The two-way Class IV separated bikeway would continue along Sunbeam Ave and convert to a Class I bikeway along Richards Blvd, which would connect with the existing Two Rivers Trail.

The Class IV separated bikeway from C St to Richards Blvd would be separated from the roadway by a buffer that would have an average 5-foot width with flexible post delineators spaced at even intervals. This buffer would also vary in width at isolated areas from about 6 feet to 14 feet between C St and North B St. On Richards Blvd from Sunbeam Ave to N 12th St, the Class I bikeway would be at the same grade as the sidewalk and would be separated from the sidewalk by a narrow landscape or bioswale strip. Green-colored pavement would be applied in areas where there is potential conflict or crossing areas between bicyclist and vehicle, such as driveways and intersections. The green-colored pavement is intended to increase awareness and visibility of both bicyclist and motorist.

The segment between H Street and C Street would consist of converting the western-most vehicle travel lane to on-street parking by reducing the existing four-lane vehicle roadway to a three-lane vehicle roadway. Class II or III bicycle lanes would be provided in this segment.

Sidewalks

The existing sidewalk on the north side of Richards Blvd from N 12th St to Sunbeam Ave would be converted to a two-way, Class I bikeway. A new sidewalk would be constructed north of and parallel to the existing sidewalk. The proposed sidewalk would be separated from the Class I bikeway by a proposed narrow bioswale strip, where feasible.

The existing sidewalk along Sunbeam Ave would be maintained except for the construction of a bus turnout area along southbound Sunbeam Ave near its intersection with N 12th St. The sidewalk in this area would be re-constructed to make room for the new bus turnout area.

August 2019 Page<u>7</u>602 of 792

The sidewalk would be reconstructed on the west side of N 12th St at the North B St intersection. To accommodate the new southbound right turn pocket and the two-way Class IV separated bikeway on N 12th St, the sidewalk would be shifted westward. The southwest corner of the intersection would be reconstructed and extended east to reduce the crosswalk length across N 12th St. Americans with Disabilities Act (ADA) compliant curb ramps would be installed at the corner of the intersection. Existing driveways not in compliance with the latest ADA standards would also be reconstructed for compliance.

The existing sidewalk along the south side of Dos Rios St would be realigned and reconstructed for approximately 220 ft starting from the intersection of N 12th St/North B St to conform with the re-construction of N 12th St at the North B St intersection, including the new two-way Class IV separated bikeway on N 12th St.

Median

New median islands would be installed on the west side of North B St and would extend eastward to its intersection with the proposed crosswalk along the west leg of the North B St/N 12th St intersection. This change in median island configuration is designed to eliminate the through movement from southbound Dos Rios St to N 12th St and restrict to a right-turn movement to prevent conflict with the proposed two-way Class IV separated bikeway. The new median island would serve as a prohibitive barrier for vehicles attempting to make this turn movement. A median island on Dos Rios St and North B St would be constructed to prohibit left-turn movements from existing adjacent parcels to eliminate conflicts at the intersection.

On-Street Parking

A mix of business and residential properties are fronting 12th St, and to meet growing parking demands, the Project would install pavement striping to designate new on-street parking stalls on the west side of 12th St from C St to H St. On-street parking would be limited to the available space after clearances to existing driveways, sight distance, existing bus stops are considered.

Street & Pedestrian Lighting

Lighting would be installed in areas to increase visibility for pedestrians, which would include enhanced lighting beneath the UPRR underpass. These improvements would increase visibility, encourage pedestrian and bicyclist activity in the area, and foster a community identity for adjacent neighborhoods. If in conflict with Project improvements, existing street lighting poles would be relocated at appropriate locations, while remaining within the existing City ROW.

Traffic Signal Improvements

A new traffic signal would be installed at the Richards Blvd and Sunbeam Ave intersection to enhance the intersection control and crossing for pedestrians and bicyclists using the Class IV bikeway. The traffic signal at the five-point intersection of N 12th St, North B St, and Dos Rios St would be modified to accommodate all bicycle movements through the intersection, including the incorporation of the two-way Class IV bikeway. The traffic signal at the C St and 12th St intersection would be modified to serve as a protected intersection on the north leg at the beginning of the two-way Class IV bikeway. Traffic striping, pavement markings, and signs would be installed along the corridor as necessary to improve the directional guidance and improve wayfinding for bicyclists, motorists, and pedestrians.

August 2019 Page<u>3</u>603 of 792

Pavement

The Project would widen minimal areas with new asphalt pavement to accommodate added vehicle turn lanes and bikeway surfacing. The Project would include a micro-seal on the streets.

Drainage Improvement

Drainage improvements would be limited to installing bioswales, constructing new curb and gutter, and adjusting or relocating existing drainage systems components to conform to the proposed improvements. Where feasible, a bioswale strip would be installed adjacent to the Class I bikeway on Richards Blvd from Sunbeam Ave to N 12th St. Existing drainage inlets would be relocated or adjusted as necessary. Significant changes to the drainage system are not anticipated in this Project.

Utilities

The City would work with utility companies, as necessary, for any utility relocation or adjustment.

Tree Removal

An oak tree on the property at the 5-point intersection of N 12th St, North B St, and Dos Rios St (APN 001-0122-014-0000) would be removed to provide enough space for the proposed improvements, which would include a right-turn lane, standard curb, gutter, and sidewalk. Existing trees along southbound Sunbeam Ave would be identified for removal to install the proposed bus turnout. Existing trees along the Project corridor would be pruned as necessary to open the canopy and provide lighting from existing light fixtures to reach the sidewalk area.

Aesthetic Treatment

The existing concrete slope paving on the north/east and north/west sides of N 12th St underpass at the UPRR tracks would receive topical aesthetic enhancements. The City may apply for grant funding to install murals of local context or interest at this location, if feasible.

1.1.2 Temporary Project Construction Components

Temporary Construction Easements

A total of thirteen Temporary Construction Easements (TCE) would be required in select locations along Richards Blvd, Sunbeam Ave, and N 12th St.

Construction Vehicle Access and Staging

Construction vehicle access and staging of construction materials would occur within disturbed or developed areas inside the existing ROW or on vacant land near the Project corridor. One potential area for staging of construction material is a vacant lot owned by the City located on North 11th St and North D St. Another potential location for staging is a vacant area of the Carson & Craig Partners property near 510 Sunbeam Ave. An area from the 1880 North B St, C/J Warehouse LLC property, which is adjacent to N 12th St, could also be a potential staging area. All construction vehicle access, materials staging, storage, and other construction activities would occur within the defined disturbance limits for the Project corridor.

1.1.3 Alternative Trail Connection

An alternate trail connection that is being considered as part of the Project is a connection to the

August 2019 Page 604 of 792

Two Rivers Trail at the current western driveway access at 1441 Richards Blvd (APN 001-0070-029-0000). If selected, this connection would replace the proposed connection alignment from Sunbeam Ave to the existing Two Rivers Trail, which travels along the north side of Richards Blvd and the west side of N 12th St. This new direct connection would include a Class I bike trail access ramp that would travel through the driveway access towards the American River levee. The trail would then travel west along the levee side slope for approximately 230 feet and connect to the existing Two Rivers Trail along the American River.

1.2 Current Land Use

The Complete Streets improvement Project spans multiple use areas within the urban corridor. The Project footprint itself largely consists of existing roadway, sidewalks, driveways, and landscaped green areas. A mix of business and residential properties currently front N 12th St, as well as vacant lots, public parking lots, and several warehouse facilities. Based on the City of Sacramento 2035 General Plan Land Use and Urban Form Diagram, the Project corridor is within areas designated as Urban Center Low, Employment Center Low Rise, Urban Center High, Urban Corridor Low, Traditional Neighborhood Medium, and Regional Commercial. The Project corridor is almost entirely within existing City-owned ROW designated for N 12th St, Richards Blvd, and Sunbeam Ave except for limited areas of ROW acquisition that would be needed at the intersection with North B St and along Sunbeam Ave.

The adjoining properties immediately surrounding the Project corridor were identified as the following:

- From H St to E St: The surrounding land use immediately adjacent to the Project is designated as C-2 General Commercial with R-3A Multi-Family Residential and R-4 Multi-Family Residential nearby.
- From E St to the Union Pacific Railroad Corridor: The surrounding land use of C-2 General Commercial continues along with RMX Residential Mixed Use, R-5 Multi-Family Residential, M-1 Industrial, as well as a narrow section of A-OS Agriculture-Open Space along the north side of the railroad corridor.
- From the Union Pacific Railroad Corridor to Richards Blvd: The surrounding land use of C-2 General Commercial continues with C-4 Heavy Commercial, R-5 Multi-Family Residential, C-1 Limited Commercial, and R-3A Multi-Family Residential.

August 2019 Page 605 of 792

Figure 1. Vicinity Map

Source: WRECO and ESRI

Figure 2. Project Area Location

Source: ESRI 2016, ESA 2017

1.3 ISA Findings and Recommendations

Blackburn Consulting prepared the Initial Site Assessment (ISA) Report for the Project corridor in July 2017, and several potential Recognized Environmental Conditions (REC) were identified as follows:

- APN 001-0122-014 (200 North 12th Street): The site is a former gasoline station and three underground fuel storage tanks (UST) are listed at the site. The service station is no longer operational, but the fuel pumps, islands, and service building remain on site. There are no indications in the records search regarding the size and locations of the USTs, if they have been removed, or if there have been any reported releases from the USTs or the associated piping. The recommendation was to conduct a Phase II screening of the soil within the proposed acquisition area to assess the presence of potential hazardous material including the following potential contaminants of concern (COC): petroleum hydrocarbons (TPH) as diesel (TPH-d), gas (TPH-g), and motor oil (TPH-mo), metals, and benzene, toluene, ethylbenzene, xylenes (BTEX);
- APN 001-0101-004 (510 Sunbeam Avenue): The site is listed as "Elmer's Welding," and the site is listed as maintaining (waste) oil that was changed by an outside company. The 1970 Sanborn Map identified "Trailer Assembling Services" at the south side of the parcel where a concrete pad was visible during the ISA investigation. The recommendation was to conduct a Phase II screening of the soil within the proposed acquisition area to assess the presence of potential hazardous material including the following potential COCs: TPH-d, TPH-g, TPH-mo, metals, and volatile organic compounds (VOC);
- APN 001-0070-029 (1441 Richards Boulevard): The site is developed as "Hart Western Truck Parts" and is listed as a small quantity generator of hazardous waste. The site was previously listed as a large quantity generator of hazardous waste. An above ground fuel tank is listed at the north section of the parcel outside of the Project footprint, and no violations were listed. The recommendation was to conduct a Phase II screening of the soil within the proposed acquisition area to assess the presence of potential hazardous material including the following potential COCs: TPH-d, TPH-g, TPH-mo, metals, and VOCs;
- APN 001-0070-007 (1401 Richards Boulevard): The site is developed as "GCR/Firestone Tire Center" and is listed as generating an unidentified waste with an "inactive" status. The recommendation was to conduct a Phase II screening of the soil within the proposed acquisition area to assess the presence of potential hazardous material including the following potential COCs: TPH-d, TPH-g, TPH-mo, and metals;
- APN 002-0010-056 (130 North 12th Street): The site is currently developed as "SIMS Metals." Metal recycling operations have occurred at the site since the early 1950s. The Department of Toxic Substances Control (DTSC) has overseen remedial investigation field activities and characterized portions of the site. The site assessment has been on-going and portions of the site are addressed in a Land Use Covenant (LUC). Records indicate COCs documented in soil and groundwater including polychlorinated biphenyls (PCB), copper, lead, waste oil, motor oil, hydraulic oil, and polycyclic aromatic hydrocarbons (PAH). A 2,000-gallon diesel UST and 10,680-gallon above ground storage tank of unknown contents are listed at the facility. The recommendation was to conduct a Phase II screening of the soil within the proposed acquisition area to assess the presence of potential hazardous

August 2019 Page 609 of 792

- material including the following potential COCs: TPH-d, TPH-g, TPH-mo, PCBs, and metals; and
- APN 002-0041-083 (131 North 12th Street): The site is listed as "Shaw," "Purity Oil," and "Contaminated Property." The western third and northern edge of the parcel, as well as the adjacent access road at the north side of the parcel are proposed for use as a staging area. The site was owned by Southern Pacific Transportation Company and a portion of the site was leased for use as a waste oil re-processing facility from 1966 to 1978. The eastern twothirds was the location of the former Purity Oil waste oil recycling facility from the 1950s until 1978. Environmental investigation and remediation of the former Purity Oil property have been overseen by CTSC since 1993. A UST was removed from the eastern portion of the site, and approximately 53 cubic yards of soil was excavated from the western portion of the site. Approximately 15,500 cubic yards of impacted soil was excavated from the Purity Oil portion in the mid-1990s. A "No Further Action Required" letter was issued by Sacramento County Environmental Management Department in 2003. GeoTracker records indicate that several additional soil removal actions have been completed from 1985 to present and that groundwater monitoring continues. Lead and oil in soils, and VOCs in groundwater have been detected at the site. In 2008, a LUC was entered into for the Former Southern Pacific-Purity Oil location at 1324 A Street. The LUC has been, in part, rescinded. The recommendation was to conduct a Phase II screening of the soil to assess the presence of potential hazardous material including the following potential COCs: TPHmo, VOCs, and metals (Blackburn Consulting 2017).

The ISA also addressed ADL, yellow traffic stripes on the N 12th St roadway, and transformers. The ISA noted that the "presence of ADL along the shoulders of pre-1987 constructed highways, freeways, and other heavily traveled roads, is common due to emissions from vehicles powered by internal-combustion, leaded-gasoline fueled engines" (Blackburn Consulting 2017). A Phase II assessment for ADL within the existing right of way throughout the alignment of the Project corridor was proposed. The ISA stated that the yellow traffic stripes are known to contain heavy metals including lead and chromium at concentrations in excess of hazardous waste thresholds established by the California Code of Regulations (CCR) and may produce toxic fumes when heated. The ISA recommended that, if called for as part of the Project, the yellow traffic stripes shall be removed and disposed of in accordance with California Department of Transportation (Caltrans) Standard Special Provisions (SSP) 14-11.12 (10/19/2018) - Remove Yellow Traffic Stripe and Pavement Marking with Hazardous Waste Residue (requires proper management of hazardous waste residue and a lead compliance plan). Pole-mounted transformers and power lines were observed within the existing City's ROW. If the relocation of power facilities or high voltage power lines are required, the ISA recommends that the transformers should be checked for the presence of PCBs or other hazardous materials by the utility company Sacramento Municipal Utility District (SMUD) and properly remediated and disposed of, which is the responsibility of the utility owner.

August 2019 Pageo 10 of 792

2 SITE SETTING

2.1 Project Study Area

The N 12th St corridor is an existing thoroughfare corridor with four active (one-way) southbound traffic lanes, a light rail system, and pedestrian sidewalks. The Project corridor transects with a railroad corridor. There are planter areas that range from bare soil with established trees to curated landscaped areas. The Project corridor is centrally located within the City limits.

2.2 Topography

The Project corridor has relatively flat topography with an initial elevation of 23 feet above mean sea level (ft AMSL) at the southern extent at N 12th St and H St. The elevation rises gradually to approximately 31 ft AMSL at the northern extent of the Project corridor at N 12th St and Richards Blvd. These elevations are based on Google Earth Pro, which uses the World Geodetic System 1984 geographic datum. With an 8-foot elevation change over a length of 1.1-mile, the Project corridor has an approximate slope of 0.1%.

2.3 Regional Geology

Sacramento County is located at the southern end of the Sacramento River Valley, which is located between the Coast and Diablo ranges to the west and the Sierra Nevada to the east. According to the Geologic Map of the Sacramento Quadrangle, California (Wagner 1981), the Project corridor is in the Great Valley geologic province, which is represented by the Sacramento Valley. It is adjacent to the westernmost edge of the Sierra Nevada geologic province. The Great Valley province is characterized by Cenozoic sedimentary and volcanic rocks, while the Sierra Nevada province is characterized by complex lithologies and structures that were assembled through various plate-tectonic processes. In this region, the Sierra Nevada province is composed of belts of Paleozoic-Mesozoic metamorphic complexes that are intruded by various Mesozoic plutons. Together, they compose the basement of the province. This basement is overlain at higher elevations by erosional remnants of Cenozoic volcanic and sedimentary rocks, including gravels. Most of these various lithologies contain gold in places. Structurally, the metamorphic rocks and some of the plutonic rocks have been deformed by folding and faulting.

The major fault zones typically trend northerly or northwesterly, although in places intrusion of the younger plutons has deformed some of the zones so as to assume other trends as well. In contrast, the overlying Cenozoic rocks are relatively undeformed. The rocks of the Great Valley province overlie the basement of the Sierra Nevada where it extends westward underneath the San Joaquin Valley. The Project corridor is associated with Cenozoic alluvial deposits of the main drainage of the American River where it discharges into the Sacramento Valley after passing through the Sierra Nevada basement terranes. The materials in these deposits have been derived due to by erosion of the various basement and Cenozoic rocks at higher elevations. The regional geologic map is shown in Figure 3.

August 2019 Page 11 of 792

Figure 3. Regional Geologic Map

August 2019 Pager 12 of 792

2.4 Local Geology and Soils

Shallow soil types encountered near the Project corridor include primarily as silts, clays, clayey gravels, and sand from surface to approximately 5.5 feet below ground surface (bgs) (Blackburn Consulting 2017). The area mapped within the Project corridor by the Natural Resource Conservation Service (NRCS), and viewed by their program "Web Soil Survey," consists largely of Columbia sandy loam and the Columbia-Urban land complex along with undifferentiated urban land that would consist of impervious areas and disturbed fill or soil. Where mapped, the soil consists of alluvium (clayey sands and silty sands) that is somewhat poorly drained with a low to moderate potential for expansion. The surface soils are listed as having a high infiltration rate and hydrologic soil group A (NRCS 2019).

2.5 Naturally Occurring Asbestos

Naturally Occurring Asbestos (NOA) can occur in serpentine rock and in its parent material, ultramafic rock. These rock types are abundant in the Sierra foothills. NOA has been identified in the County and ultramafic rocks have been generally mapped along the eastern side of the Sierra Nevada foothills, but not in the Sacramento Valley in the area of the City. The most common forms of naturally-occurring fibrous minerals with NOA are chrysotile, actinolite, and tremolite. A review of the "General Location Guide for Ultramafic Rocks in California – Areas Likely to Contain Naturally Occurring Asbestos" (CGS 2000) indicated that NOA has not been mapped in the near vicinity of the Project corridor.

2.6 Groundwater Hydrology

The Project corridor area is in the Sacramento Valley Groundwater Basin, South American Subbasin (5-21.65), as defined by the Department of Water Resources (DWR) Bulletin 118. The South American Subbasin is bounded on the east by the Sierra Nevada foothills, on the west by the Sacramento River, on the north by the American River, and on the south by the Cosumnes and Mokelumne Rivers. These perennial rivers generally create a groundwater divide in the shallow subsurface (DWR 2004). The Sacramento Valley Groundwater Basin is divided into four subbasins: The North and South American Subbasins, which encompass the eastern side of the valley, and the Yolo and Solano Subbasins, which cover the western side of the valley (Figure 4).

The South American subbasin aquifer system is comprised of continental deposits of Late Tertiary to Quaternary age. These deposits include younger alluvium (consisting of flood basin deposits, dredge tailings, and Holocene stream channel deposits), older alluvium, and Miocene/Pliocene volcanics. The cumulative thickness of these deposits increases from a few hundred feet near the Sierra Nevada foothills on the east to over 2,500 feet along the western margin of the subbasin. The maximum combined thickness of all the younger alluvial units is about 100 feet (DWR 2004).

The flood basin deposits occur along the western margin of the subbasin adjacent to the Sacramento River. They consist primarily of silts and clays, but along the western margin of the subbasin may be locally interbedded with stream-channel deposits of the Sacramento River. Due to their fine-grained nature, the flood basin deposits have low permeability and generally yield low quantities of water to wells. The dredger tailings are exposed primarily along the American River in the northeastern corner of the subbasin. They consist of windows of gravel, cobbles, boulders,

August 2019 Page: 613 of 792

sand, and silt resulting from the activities of gold-dredging operations. The stream-channel deposits include sediments deposited in the channels of active streams as well as overbank deposits of those streams, terraces, and local dredger tailings. They occur along the Sacramento, American, and Cosumnes rivers and their major tributaries and consist primarily of unconsolidated silt, fine-to-medium-grained sand, and gravel. Sand and gravel zones in the younger alluvium are highly permeable and yield significant quantities of water to wells (DWR 2004).

Groundwater in the Central Sacramento Basin has historically been used for agriculture and water resources, which has led to a decline in groundwater levels in the basin. The Central Basin is bounded to the north by the American River and to the south by the Cosumnes River, which provide substantial recharge to the South American Subbasin. Shallow groundwater typically occurs under unconfined conditions, with areas of semi-confined conditions beneath interbedded clay layers. Data from properties near the Project corridor, indicate depth to groundwater ranges from approximately 10- to 25-feet bgs, with a regional groundwater flow direction to the south-southeast (GeoTracker 2019).

Figure 4. Sacramento Valley Groundwater Basin and Subbasins

Source: DWR SGMA

2.7 Surface Water Hydrology

The Project corridor area is located within the Sacramento River Hydrologic Region, which is the longest river system in California, and includes the Pit, Feather, Yuba, Bear, and American rivers as tributaries. The Sacramento River flows north to south through the length of the Sacramento Valley and drains into the Sacramento-San Joaquin river delta region. The American River flows west from the Sierra Nevada Range to the confluence with the Sacramento River. The American River is located approximately 100 feet northeast of the northern Project limits, and the Sacramento River is located approximately 1.0 miles to the west of the Project. The City is located at the confluence of the American and Sacramento Rivers with an extensive system of dams, levees, and flood control bypass channels to protect the City from flooding.

Figure 5. Sacramento River Hydrologic Region

Source: DWR Groundwater Update 2013

August 2019 Page 6 15 of 792

This page intentionally left blank

3 PSI-ADL STUDY

3.1 Soil Sampling Methods and Procedures

A subsurface investigation was conducted by WRECO staff on January 17, 2019, that included collecting shallow soil samples from 15 borings in areas proposed for excavation and soil disturbance along the Project corridor. The PSI-ADL Study was performed within the landscaped or unpaved areas along the western side of N 12th St. The PSI-ADL Study was performed to verify the presence/absence of RECs outlined in the ISA Report (Blackburn Consulting 2017) to evaluate the available options for soil disposal or reuse, and to provide guidance for waste management and worker safety during construction.

Prior to field work being performed, the sample locations were marked in white paint, and USA North 811 was contacted to mark utilities near the boring locations. An encroachment permit with the City of Sacramento was obtained in order to work along the N 12th St Project corridor, and a copy is provided in Appendix A. The limited shallow soil investigation was performed using direct push technology (DPT) methods to take continuous core soil samples at specific locations (Figure 6 through Figure 10). DPT uses a hydraulically-operated percussion hammer along with vehicle weight to advance the sampling barrel with an acetate liner used to contain the soil sample.

Penecore Drilling of Woodland California used a Geoprobe® 6712 Track Rig to advance 15 soil borings (SB-1 through SB-15) along the Project corridor using a 5-foot continuous coring sampler with an acetate liner. Because the diameter of the DPT is only 2.25 inches, minimal drill cuttings were generated, thereby lowering the amount of investigation derived waste (IDW) produced. Soil samples were contained in the 5-foot acetate liner, and the liner was cut at specific intervals of 0-1, 1-2, and 2-3 ft, capped at each end with a Teflon sheet and plastic lid, labeled, and placed into an ice chest with ice. The chain of custody was completed in the field and relinquished to laboratory staff upon delivery to California Laboratory Services (CLS) in Rancho Cordova, California.

Soil encountered during sampling consisted of gray to brown silty fine sand with fine gravels. The borings were backfilled with grout and capped with native soil. Groundwater was not encountered during sampling activities. The samples were analyzed for total lead, pH, and additional COCs including VOCs, TPH-g, TPH-d, BTEX, PCBs, polynuclear aromatic hydrocarbons (PNA), organochlorine pesticides, and CAM 17 metals (+ mercury). Soil boring locations were based on potential impacts from previous uses of the adjoining properties in the Project corridor area as identified in the ISA Report, as listed in Table 1.

August 2019 Pages 17 of 792

Table 1. PSI - ADL Soil Sample Collection and Analyses

Boring Number	Approximate Boring Location	Sampling Interval	Risk	Contaminants of Concern				
S-1	Lat: 38°35'0.48"N Long: 121°29'21.32"W	0-1 ft, 1-2 ft, 2-3 ft	Agriculture, Historical traffic	Lead, pH, Organochlorin Pesticides, PNAs,				
S-2	Lat: 38°35'4.44"N Long: 121°29'19.55"W	0-1 ft, 1-2 ft, 2-3 ft	Historical traffic	Lead, pH				
S-3	Lat: 38°35'8.36"N Long: 121°29'17.93"W	0-1 ft, 1-2 ft, 2-3 ft	Historical traffic, Petroleum hydrocarbons	Lead, pH, TPH-g, BTEX				
S-4	Lat: 38°35'13.65"N Long: 121°29'15.60"W	0-1 ft, 1-2 ft, 2-3 ft	Historical traffic, Petroleum hydrocarbons	Lead, pH, TPH-g, BTEX				
S-5	Lat: 38°35'25.66"N Long: 121°29'10.39"W	0-1 ft, 1-2 ft, 2-3 ft	Historical traffic, Petroleum hydrocarbons, Metals, PCBs, PNAs	Lead, pH, TPH-g, TPH-d PCBs, PNAs, CAM 17 metals (+ mercury)				
S-6	Lat: 38°35'26.88"N Long: 121°29'8.97"W	0-1 ft, 1-2 ft, 2-3 ft	Historical traffic, Petroleum hydrocarbons	Lead, pH, TPH-g, TPH-c BTEX, VOCs				
S-7	Lat: 38°35'27.57"N Long: 121°29'6.60"W	0-1 ft, 1-2 ft, 2-3 ft	Historical traffic, Petroleum hydrocarbons	Lead, pH, BTEX, VOCs				
S-8	Lat: 38°35'28.68"N Long: 121°29'4.36"W	0-1 ft, 1-2 ft, 2-3 ft	Historical traffic	Lead, pH				
S-9	Lat: 38°35'30.01"N Long: 121°29'1.63"W	0-1 ft, 1-2 ft, 2-3 ft	Historical traffic	Lead, pH				
S-10	Lat: 38°35'34.37"N Long: 121°28'52.24"W	0-1 ft, 1-2 ft, 2-3 ft	Historical traffic, Petroleum hydrocarbons	Lead, pH, TPH-g, BTEX				
S-11	Lat: 38°35'35.69"N Long: 121°28'51.28"			Lead, pH, TPH-g, BTEX				
S-12	Lat: 38°35'37.13"N Long: 121°28'51.04"W	0-1 ft, 1-2 ft, 2-3 ft	Historical traffic, Petroleum hydrocarbons	Lead, pH, TPH-g, TPH-d BTEX, VOCs, CAM 17 metals (+ mercury)				
S-13	Lat: 38°35'38.20"N Long: 121°28'50.25"W	0-1 ft, 1-2 ft, 2-3 ft	Historical traffic, Petroleum hydrocarbons	Lead, pH, TPH-g, BTEX				
S-14	Lat: 38°35'41.05"N Long: 121°28'48.54"W	0-1 ft, 1-2 ft, 2-3 ft	Historical traffic, Petroleum hydrocarbons	Lead, pH, TPH-g, BTEX				
S-15	Lat: 38°35'42.55"N Long: 121°28'46.35"W	0-1 ft, 1-2 ft, 2-3 ft	Historical traffic, Petroleum hydrocarbons	Lead, pH, TPH-g, TPH-d BTEX, VOCs, CAM 17 metals (+ mercury)				

Lead was analyzed using United States Environmental Protection Agency (EPA) Method 6010B; pH was analyzed using EPA Method 9045C; Organochlorine Pesticides were analyzed using EPA Method 8081A; PNAs (polynuclear aromatic hydrocarbons) were analyzed using EPA Method 8270C; TPH-g and TPH-d were analyzed using EPA Method 8015M, BTEX were analyzed using EPA Method 8260B; PCBs were analyzed using EPA Method 8082A; CAM 17 metals were analyzed using EPA Method 6020; VOCs were analyzed using EPA Method 8260B.

August 2019 Page 18 of 792

Figure 6. Soil Boring Locations SB-1 through SB-3, North 12th Street, Sacramento

Figure 7. Soil Boring Location SB-4, North 12th Street, Sacramento

Figure 8. Soil Boring Locations SB-5 through SB-9, North 12th Street, Sacramento

Figure 9. Soil Boring Locations SB-10 through SB-12, North 12th Street, Sacramento

Preliminary Site Investigation-Aerially Deposited Lead Study North 12th Street Complete Streets Project City of Sacramento, Sacramento County, California

Figure 10. Soil Boring Locations SB-10 through SB-12, North 12th Street, Sacramento

3.2 Analytical Results

Forty-two soil samples (with sampling depths of 0-1 ft, 1-2 ft, and 2-3 ft), collected from 15 borings, were analyzed for total lead and had detectable concentrations ranging from 2.8 to 470 milligrams per kilogram (mg/kg). Eleven soil samples, SB-4-0-1, SB-5-0-1, SB-5-1-2, SB-5-2-3, S-5 (composite), SB-6-0-1, SB-6-1-2, SB-7-0-1, SB-7-1-2, SB-11-0-1, and SB-14-1-2, had lead concentrations exceeding 10 times the Soluble Threshold Limit Concentration (STLC) value of 5 milligrams per liter (mg/L), but were below the Total Threshold Limit Concentration (TTLC) value (1,000 mg/kg). Analytical results for the lead soil screening are summarized in Table 2.

Due to the exceedances, these soil samples were analyzed using the California Waste Extraction Test (CA WET). Soil samples SB-5-2-3 and SB-6-1-2 did not have enough remaining sample to run the CA WET. Laboratory results indicated that soil samples SB-4-0-1, SB-5-0-1, SB-7-0-1, SB-7-1-2, SB-11-0-1, and SB-14-1-2 had CA WET concentrations below the STLC value of 5 mg/L; however, soil samples SB-5-1-2, SB-5 (composite), and SB-6-0-1 had CA WET lead concentrations of 13, 5.2, and 11 mg/L, respectively, which are above the STLC value of 5 mg/L, which pre-classifies the soil from these boring locations as California Hazardous.

The three samples that exceeded the STLC value, were analyzed using the Toxicity Characteristic Leaching Procedure (TCLP), to determine if the soils exceeded federal standards. The laboratory results indicated that lead concentrations for SB-5-1-2, SB-5 (composite), and SB-6-0-1 had TCLP lead concentrations of non-detectable (ND), 0.53 mg/L, and 0.82 mg/L, respectively. All the samples were below the TCLP value (5 mg/L), which means the soil from these boring locations is not a federal hazardous waste. The TCLP analysis is performed to evaluate if soils do not qualify for reuse due to designation as a RCRA Hazardous.

Composite soil samples SB-5, SB-12, and SB-15 were analyzed for CAM-17 (heavy) metals and had detectable arsenic concentrations of 6.7 mg/kg, 5.3 mg/kg, and 8.0 mg/kg, respectively; and detectable chromium concentrations of 32 mg/kg, 43 mg/kg, and 49 mg/kg, respectively. These concentrations are below 10 times the STLC values for arsenic (5 mg/L) and chromium (5 mg/L) and did not require additional CA WET testing. As precautionary measures, the SB-15 composite sample was analyzed for CA WET chromium to confirm it was below STLC values. The laboratory results indicated the CA WET chromium was below detection limits, and soil from SB-15 is preclassified as Non-Hazardous.

All concentrations of Pesticides, PNAs, TPH-g, TPH-d, BTEX, VOCs, and PCBs, were below detection limits, except for two low detectable concentrations of TPH-d in composite samples SB-6 (5.5 mg/kg) and SB-15 (4.7 mg/kg). Composite samples SB-5, SB-12, and SB-15 were analyzed for Mercury (CAM 17 Metals) and all samples were below detection limits. Analytical results for the composite soil screening for COCs are summarized in Table 3.

The pH of the 42 soil samples analyzed ranged from 6.22 to 10.23 (Table 2). These concentrations are within threshold (greater than 2 and less than 12.5) for state and federal waste criteria for reuse (for soil that does not exceed STLC lead concentrations). The Laboratory Reports are provided in Appendix B.

Table 2. Screening Level Summary - Lead Sample Results

Boring/		Lead	CA WET	TCLP	Environn	nental Screeni	ng Levels	Crit	us Waste teria	Waste
Sample ID	pН	Results (mg/kg)	(mg/L)	(mg/L)	Res. (mg/kg)	Comm/Ind (mg/kg)	Const Worker (mg/kg)	STLC TCLP (mg/L)	TTLC (mg/kg)	Classification
SB-1-0-1	6.90	3.7			80	320	160	5.0	1,000	
SB-1-1-2	7.20	4.8		4	80	320	160	5.0	1,000	
SB-1-2-3	8.49	4.5	1-3-6		80	320	160	5.0	1,000	
SB-2-0-1	8.11	7.9		-	80	320	160	5.0	1,000	7
SB-2-1-2	7.83	3.2			80	320	160	5.0	1,000	or
SB-2-2-3	7.66	4.8	200		80	320	160	5.0	1,000	Non-Hazardous
SB-3-0-1	10.23	30	4	-	80	320	160	5.0	1,000	az
SB-3-1-2	8.32	4.2	10-00	-	80	320	160	5.0	1,000	arc
SB-3-2-3	8.15	3.9	2-	-	80	320	160	5.0	1,000	2
SB-4-0-1	8.13	79	3.2	-	80	320	160	5.0	1,000	(A)
SB-4-1-2	7.54	5.9		-	80	320	160	5.0	1,000	1
SB-4-2-3	8.04	4.2	1 - 2 - 1		80	320	160	5.0	1,000	
SB-5-0-1	7.24	73	1.8		80	320	160	5.0	1,000	
SB-5-1-2	8.42	72	13	ND	80	320	160	5.0	1,000	
SB-5-2-3	8.35	100			80	320	160	5.0	1,000	California
SB-5 C	17940	180	5.2	0.53	80	320	160	5.0	1,000	Hazardous
SB-6-0-1	8.26	250	11	0.82	80	320	160	5.0	1,000	2.000
SB-6-1-2	9.47	470			80	320	160	5.0	1,000	
SB-6-2-3			1 24 1	110.22	80	320	160	5.0	1,000	
SB-7-0-1	6.84	130	2.0		80	320	160	5.0	1,000	
SB-7-1-2	8.67	250	4.3	4.1	80	320	160	5.0	1,000	-
SB-7-2-3	7.74	5.7			80	320	160	5.0	1,000	
SB-8-0-1	6.68	ND			80	320	160	5.0	1,000	
SB-8-1-2	8.09	ND		1-4	80	320	160	5.0	1,000	
SB-8-2-3	7.56	4.6			80	320	160	5.0	1,000	
SB-9-0-1	6.22	2.8	1144		80	320	160	5.0	1,000	
SB-9-1-2	8.69	12	1 4		80	320	160	5.0	1,000	
SB-9-2-3					80	320	160	5.0	1,000	
SB-10-0-1	7.07	8.6			80	320	160	5.0	1,000	
SB-10-1-2	6.96	19		-	80	320	160	5.0	1,000	
SB-10-2-3	7.58	44		_	80	320	160	5.0	1,000	No.
SB-11-0-1	6.59	65	3.2		80	320	160	5.0	1,000	Non-Hazardous
SB-11-1-2	7.65	9.6		-	80	320	160	5.0	1,000	Haz
SB-11-2-3	7.73	ND			80	320	160	5.0	1,000	zar
SB-12-0-1	7.47	36			80	320	160	5.0	1,000	do
SB-12-1-2	7.36	17			80	320	160	5.0	1,000	us
SB-12-2-3	7.29	6.8			80	320	160	5.0	1,000	
SB-13-0-1	7.31	31	2.3		80	320	160	5.0	1,000	
SB-13-1-2	6.94	29		-	80	320	160	5.0	1,000	
SB-13-2-3	0.54				80	320	160	5.0	1,000	
SB-14-0-1	6.57	35		1	80	320	160	5.0	1,000	
SB-14-0-1	6.57	53	1.5		80	320	160	5.0	1,000	
SB-14-2-3	7.32	14	1.3	1021	80	320	160	5.0	1,000	
SB-14-2-3 SB-15-0-1		45			1/1					
SB-15-0-1	7.76			-	80	320	160	5.0	1,000	
	7.55	6.8			80	320	160	5.0	1,000	
SB-15-2-3	7.79	7.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		80	320	160	5.0	1,000	L

Note: STLC = Soluble Threshold Limit Concentration; TTLC = Total Threshold Limit Concentration; mg/kg = milligram per kilogram; mg/L = milligram per liter; -- = not analyzed; SB-5 C is a composite sample; Lead analyzed using EPA 6010B; pH analyzed using EPA 9045C.

Preliminary Site Investigation-Aerially Deposited Lead Study North 12th Street Complete Streets Project City of Sacramento, Sacramento County, California

WRECO P18121

Table 3. Screening Level Summary - Composite Sample Results

g/Kg)	(µg/Kg)
(mg/L)	(mg/
-	1
-	1
1	1
-	1
1	1
1	1
1	ı
1	1
1	1
1	1
5.2	5.2
1	1
-	1
1	1
-	-
1	1
-	1
-	-
))
-	1
1	4
1	1
-	-
1	1
1	1
1	•
1	-

Preliminary Site Investigation-Aerially Deposited Lead Study North 12th Street Complete Streets Project City of Sacramento, Sacramento County, California

Waste Classification					ì	Noi	ı-H	[az	ard	lou	ıs			1	1	1	1	1			1	Noi	n-H	Iaz	arc	lou	ıs			1	ı	1
Hazardous Waste Criteria	STLC	(mg/L)	5.0	100	5.0	08	25	5.0	0.2	20	24	250	1	1	1	1	1	1	5.0	100	5.0	08	25	5.0	0.2	20	24	250	1	ı	1	1
Hazardo Cri	TTLC	(mg/kg)	500	10,000	2,500	8,000	2,500	1,000	20	2,000	2,400	5,000	Ť	1	1	1	1	1	200	10,000	2,500	8,000	2,500	1,000	20	2,000	2,400	5,000	1	ī	1	ì
-1)	Const. Worker	(mg/kg)	0.98	3,000	1	28	14,000	160	44	98	470	110,000	1	1,800	1,100	1	1	1	86.0	3,000	1	28	14,000	160	44	98	470	110,000	1	1,800	1,100	1
ESL¹ (Table S-1)	Comm/Ind	(mg/kg)	0.31	220,000	1	350	47,000	320	190	11,000	5,800	350,000	1	2,000	1,200	1	1		0.31	220,000	1	350	47,000	320	190	11,000	5,800	350,000	1	2,000	1,200	1
I	Residential	(mg/kg)	0.067	15,000	1	23	3,100	08	13	820	390	23,000	1	430	260	1	1	1	0.067	15,000	1	23	3,100	80	13	820	390	23,000	1	430	260	1
TCLP (mg/L)				1	3	1	3	1	1	ł	1	1	1	1	1	1	-	1	1	1	1	1	1	1	1	1	1	ł	1	4	1	1
STLC	(mg/L)		1	-	1		1	_	1	1	1		-	ı	1	-	1	1	1	1	N	1	-	ı	1	1	ı	1	-	1	-	1
Results (µg/Kg)	ì		1	1	1	1	1	-	1	t	1		-	1	1	ND	ON	QN	1	1	1	4	1	1	1	;	1	1	1	1	1	N
Results (mg/Kg)	ì		5.3	93	43	6.5	36	16	0.11	40	45	64	N	N	N N	1	t	1	8.0	120	46	12	27	14	0.083	47	51	50	R	QN	4.7	1
Analysis			Arsenic	Barium	Chromium	Cobalt	Copper	Lead	Mercury	Nickel	Vanadium	Zinc	All CAM-17	TPH-g	P-H-dI	VOCs	VOCs	VOCs	Arsenic	Barium	Chromium	Cobalt	Copper	Lead	Mercury	Nickel	Vanadium	Zinc	All CAM-17	TPH-g	P-H-L	VOCs
Boring/ Composite	Sample								01 03	21-gc					7		SB-13	SB-14							21 40	SB-15				Ĭ		

¹ = ESLs listed are the lowest cancer risk or non-cancer hazard level; Pesticides (EPA 8081A); PNAs (EPA 8270C); PCBs (EPA 8082A); TPH-g/-d (EPA 8015M); BTEX/VOCs (EPA 8260B); Mercury (EPA 7471B); CAM 17 Metals (EPA 6000/7000); ND – below detection limits; – no data.

3.3 Statistical Evaluation - 95% Upper Confidence Limit

The analytical data for the soil samples was analyzed using statistical evaluation to identify the appropriate handling of soil affected by ADL. During upcoming Complete Street Improvements along N 12th St, soil that exceeded STLC values will need to be excavated, stockpiled, and transported offsite or relocated using methods that tend to standardize soil concentrations.

Statistical methods were applied using the EPA's ProUCL Version 5.1 (ProUCL) statistical software to evaluate the upper confidence limit (UCL) of the arithmetic means of the lead concentrations for each sampling depth. Calculating upper statistical limits, for the 95 % UCL of the population mean, is defined as the value that when calculated repeatedly for randomly drawn subsets of site data, equals the true mean 95% of the time. Statistical confidence limits are regarded as the classical tool for addressing uncertainties of a distribution mean. The 95% UCLs of the arithmetic mean concentration are used as mean concentrations, because it is not possible to know the true mean due to the essentially infinite number of soil samples that could be collected from a site. For the purpose of making good decisions at a polluted site, which are cost-effective, and protective of human health and the environment, ProUCL was used to calculate rigorous statistical methods. Determining the management of soil-containing ADL (hazardous classifications) using the 95% UCLs, the parameters are as follows:

- If the 95% UCL of the mean for total lead is less than 1,000 mg/kg and less than 5.0 mg/L soluble lead (CA-WET), then the soil is considered non-hazardous and may be disposed of at a Class II or III facility, provided that site-specific disposal facility requirements are satisfied.
- If the 95% UCL of the mean for total lead is less than 1,000 mg/kg and more than 5.0 mg/L soluble lead (CA-WET), then the soil is considered non-RCRA (regulated in the State of California, or California-hazardous) hazardous waste and may be disposed of at a Class I or II facility, provided that site-specific disposal facility requirements are satisfied.
- If the 95% UCL of the mean for total lead is greater than 1,000 mg/kg or less than 5.0 mg/L TCLP, then the soil is considered RCRA hazardous and may be disposed of only at a Class I facility, provided that site-specific disposal facility requirements are satisfied.

The 95% UCL calculations were completed for each of the three depth ranges 0-1 ft, 1-2 ft, and 2-3 ft bgs. The inclusion of outlier values (observation points that are distant from other observations) tends to produce inflated values. Therefore, outlier values were identified and removed from the data set. The three different depth ranges were analyzed for their "goodness-of-fit" test for normal, gamma, or lognormal distribution. The bootstrap method was not used for analysis, because the sample sizes were smaller than that typically recommended for the bootstrap method (<500-1,000 and >15-20) per the ProUCL 5.1 Technical Guide (EPA 2016).

A normal distribution was used for sampling depths 0-1 ft and 2-3 ft. A gamma distribution was used for sampling depth 1-2 feet. The following average detectable lead concentration results were calculated for each depth: 56.77 (0-1 ft), 43.02 (1-2 ft), and 5.94 mg/kg (2-3 ft). A summary of the 95% UCL results are shown in Table 4, and the spreadsheet with the statistical 95% UCL calculations is provided in Appendix C.

August 2019 Page 627 of 792

Table 4. Summary	of 95% UCL	for Soil De	oth Intervals

Depth Interval	Mean (mg/kg)	Median (mg/kg)	Lead TTLC 95% UCL (mg/kg)	Distribution	Waste Classification
0-1 ft	39.25	35.0	56.77	Normal	Non-Hazardous*
1-2 ft	18.38	10.8	43.02	Gamma	Non-Hazardous
2-3 ft	4.97	4.7	5.94	Normal	Non-Hazardous

Mean = Average Concentration, mg/kg = milligram per kilogram, Calculations for the 95% UCL are provided in Appendix C; * - waste classification is based on concentration being below the TTLC (1,000 mg/kg) value, even if TTLC exceeds 10 times the STLC (50 mg/L) value, staying in the requirements of EPA/DTSC Soil Guidance of 80 mg/kg (residential) exposure levels.

3.4 Hazardous Waste Determination Criteria

Due to the historical use of lead in gasoline formulations, lead contamination is common in surface soils along roadways. ADL-impacted soils are regulated at both the federal and state levels, because they can be classified as federal hazardous waste, or they are subject to state regulations when not classified as federal hazardous waste, and they may represent a health risk to construction workers that will be excavating shallow soil for the Project corridor improvements.

Regulatory criteria to classify a waste as "California Hazardous" for handling and disposal purposes are contained in the California Code of Regulations (CCR), Title 22, Division 4.5, Chapter 11, Article 3, § 66261.24.

For solid wastes (soil) containing lead, the waste is classified as California Hazardous when:

- Total lead concentrations equal to or exceeding 1,000 mg/kg, the TTLC, are classified as Hazardous waste.
- Soluble lead concentrations (assessed using CA WET procedures) equal to or exceeding 5.0 mg/L, the STLC, are classified as California Hazardous under California law.
- California hazardous materials must be transported under a hazardous waste manifest and disposed of at an appropriately permitted facility.
- Wastes with lead concentrations less than both the TTLC and the STLC are <u>Non-Hazardous</u> waste and may be disposed of at a Class II or III facility, provided that site-specific disposal facility requirements are satisfied.

A waste may have the potential of exceeding the STLC when the waste's total metal content (as TTLC) is greater than or equal to ten times the respective STLC value, since the WET uses a 1:10 dilution ratio. Hence, when a total metal is detected at a concentration greater than or equal to ten times the respective STLC, and assuming that 100 percent of the total metals are soluble, soluble metal analysis is required.

Criteria to classify a waste as "Resource, Conservation, and Recovery Act (RCRA) Hazardous" are contained in Chapter 40 of the Code of Federal Regulations (40 CFR), § 261.

 According to federal law, as stipulated in the RCRA, wastes that exceed 5.0 mg/L soluble lead, extracted using the federal TCLP, are classified as RCRA Hazardous waste. This material must be disposed of as RCRA Hazardous waste if transported offsite.

August 2019 Pages 28 of 792

SB-5-1-2, SB-5 (composite), and SB-6-0-1 have lead concentrations at levels that classify them as California Hazardous.

The above regulatory criteria are based on chemical concentrations. Wastes may also be classified as hazardous based on other criteria such as ignitability and corrosivity; however, for the purposes of this investigation, toxicity (i.e., representative lead concentrations) is the primary factor considered for waste classification since waste generated during the construction activities would not likely warrant testing for ignitability or corrosivity. Waste that is classified as either California-hazardous or RCRA-hazardous requires management as a hazardous waste.

3.5 Results and Findings

Fifteen shallow soil borings were sampled along the proposed Project corridor, N 12th St from H St to Richards Blvd, and 42 soil samples were collected. Eleven soil samples out of 42 had lead concentrations exceeding 10 times the STLC value of 5 mg/L, but were below the TTLC value of 1,000 mg/kg. Nine of the 11 soil samples were analyzed for CA WET to evaluate the STLC concentrations (two soil samples did not have enough remaining soil to be analyzed). Laboratory results indicated that three of the nine soil samples analyzed had CA WET lead concentrations of above the STLC value of 5 mg/L. These concentrations are representative of the shallow soil in the borings they were collected from and meet the criteria for California Hazardous Waste. The three samples were analyzed for TCLP, to determine if the concentrations exceeded federal standards. The laboratory results indicated that lead concentrations were below the TCLP value (5 mg/L), and the shallow soil does not meet criteria for RCRA Hazardous Waste. Table 2 shows the exceedances and waste classification for Borings SB-5 and SB-6 (see Figure 11). These boring locations (at the intersection of N 12th St and B St and Dos Rios St) will need to be managed for worker safety during construction activities.

WRECO reviewed the soil analytical results for the listed COCs and screened them against the San Francisco Bay Regional Water Quality Control Board (RWQCB) Environmental Screening Levels (ESL) (2019) and the EPA California Human Health Screen Levels (CHHSL) (2009). These screening criteria take into consideration direct exposure human health risk levels and shallow soil exposure to residential, commercial/industrial, and construction worker (any land use/any depth soil exposure). The CHHSLs were developed by the Office of Environmental Health Hazard Assessment (OEHHA) on behalf of the California EPA, pursuant to *Health and Safety Code Section 57008*. Under most circumstances, the presence of a chemical in soil, soil-gas, or groundwater, at concentrations below the corresponding ESL/CHHSL, can be assumed to not pose a significant threat to human health, water resources, or the environment. Additional evaluation will generally be recommended at sites where a chemical is present at concentrations above the corresponding ESL/CHHSL. The ESLs/CHHSLs are not criteria to be used for determining how or where to dispose of waste soils or waters, they are instead used for human exposure levels and will determine worker safety requirements during Project construction.

Composite soil samples, SB-5, SB-12, and SB-15, were analyzed for CAM-17 metals, and had detectable arsenic concentrations of 6.7 mg/kg, 5.3 mg/kg, and 8.0 mg/kg, respectively, which are below the STLC limit (10 times the STLC of 5 mg/L). The soil in the areas near SB-12 (N 12th

August 2019 Page 629 of 792

St/Sunbeam Ave) and SB-15 (N 12th St/Richards Blvd) may be pre-classified as Non-Hazardous. These samples did exceed the ESLs and CHHSLs for residential, commercial/industrial, and construction worker exposure limits (cancer risk). Therefore, the soil in the areas near SB-12 (N 12th St/Sunbeam Ave) and SB-15 (N 12th St/Richards Blvd) need to be managed for worker safety during construction. Background arsenic levels in California tend to be higher than the RWOCB ESLs used for evaluation of a soil's hazardous classification, and various studies have shown much higher levels in soil. The United States Geological Survey (USGS 1984) provided a regional estimate for arsenic of 18 mg/kg and cobalt of 23 mg/kg (both upper estimates). The Lawrence Berkeley National Laboratory (LBNL 2009) provided upper estimates of background levels (based on statistical analysis) of arsenic and cobalt. The LBNL study indicated concentrations of arsenic and cobalt at 24 mg/kg and 25 mg/kg, respectively. Due to the high capacity of clay and organic matter to adsorb metallic ions, arsenic concentrations tend to be highest in soils that contain high percentages of clay and organic material (e.g., clay and clay loamy soils, organic light [or rich] soils) (NAVFAC 2002). Therefore, it is expected that finer-grained depositional environments within the Bay Area would likely have higher natural concentrations of arsenic relative to sandy or gravelly soils.

Composite soil samples, SB-5, SB-12, and SB-15, had detectable chromium concentrations of 32 mg/kg, 43 mg/kg, and 49 mg/kg, respectively, which are below the STLC limit (10 times the STLC of 5 mg/L). The soil in the areas near SB-12 (N 12th St/Sunbeam Ave) and SB-15 (N 12th St/Richards Blvd), may be pre-classified as Non-Hazardous. These samples did exceed the ESLs and CHHSLs for residential, commercial/industrial, and construction worker exposure limits (Cr VI - cancer risk); however, the concentrations are below ESLs and CHHSLs for Cr III and VI – non-cancer hazard (there are no values for total chromium). Therefore, the soil in the areas near SB-12 (N 12th St/Sunbeam Ave) and SB-15 (N 12th St/Richards Blvd), need to be managed for worker safety during construction.

The lead concentrations for composite sample SB-5 was 180 mg/kg (TTLC), 5.2 mg/L (STLC), and 0.53 mg/L (TCLP). The lead concentrations for samples SB-5-0-1, SB-5-1-2, and SB-5-2-3, are 73 mg/kg (TTLC)/1.8 mg/L (STLC); 72 mg/kg (TTLC)/13 mg/L (STLC)/ND (TCLP); and 100 mg/kg (TTLC) (insufficient amount of sample to run additional STLC analyses); respectively. Composite sample SB-5 and sample SB-5-1-2 can be pre-classified as California Hazardous. The lead concentrations for composite sample SB-5 exceeded the ESLs and CHHSLs for residential and construction worker exposure, and sample SB-5-2-3 exceeded the ESLs and CHHSLs for residential exposure. The soil in the area near SB-5 may be pre-classified as California Hazardous, and needs to be managed for worker safety during construction.

The lead concentrations were below the RWQCB ESLs and EPA CHHSLs of 80 mg/kg (residential) and 320 mg/kg (commercial/industrial) exposure levels.

Six of the 42 soil samples, SB-5-2-3, S-5 (composite), SB-6-0-1, SB-6-1-2, SB-7-0-1, and SB-7-1-2, exceeded the lead exposure level for residential ESLs/CHHSLs; four of the six samples (SB-5 (composite), SB-6-0-1, SB-6-1-2, and SB-7-1-2) exceeded the lead exposure level for construction worker ESLs/CHHSLs; and one of the samples (SB-6-1-2) exceeded the lead exposure level for commercial/industrial ESLs/CHHSLs.

August 2019 Page 630 of 792

Preliminary Site Investigation-Aerially Deposited Lead Study North 12th Street Complete Streets Project City of Sacramento, Sacramento County, California

WRECO P18121

Composite soil samples SB-5, SB-12, and SB-15, had detectable arsenic and chromium concentrations, which were above the exposure level for residential, commercial/industrial, and construction worker ESLs/CHHSLs.

The laboratory results are summarized in Table 2. Screening Level Summary - Lead Sample Results and Table 3. The laboratory reports are provided in Appendix B.

August 2019 Pages 31 of 792

WRECO P18121

Figure 11. Lead CA WET Lab Results for Boring Locations SB-5, SB-6, and SB-7

August 2019

3.6 Conclusions and Recommendations

3.6.1 Waste Management

Soil samples SB-4-0-1, SB-5-0-1, SB-5-1-2, SB-5-2-3, S-5 (Composite), SB-6-0-1, SB-6-1-2, SB-7-0-1, SB-7-1-2, SB-11-0-1, and SB-14-1-2, had lead concentrations exceeding 10 times the Soluble Threshold Limit Concentration (STLC) value of 5 milligrams per liter (mg/L), but were below the TTLC value (1,000 mg/kg). Due to the exceedances, the soil samples SB-4-0-1, SB-5-0-1, SB-5-1-2, S-5 (composite), SB-6-0-1, SB-7-0-1, SB-7-1-2, SB-11-0-1, and SB-14-1-2 were analyzed using the CA WET. Soil samples SB-5-2-3 and SB-6-1-2 did not have sufficient remaining sample to run the CA WET. Results indicated that soil samples SB-5-1-2, SB-5 (Composite), and SB-6-0-1 had CA WET lead concentrations of 13, 5.2, and 11 mg/L, respectively, which are above the STLC value of 5 mg/L. Results indicated that soil samples SB-4-0-1, SB-5-0-1, SB-7-0-1, SB-7-1-2, SB-11-0-1, and SB-14-1-2 had CA WET concentrations below the STLC value of 5 mg/L. The lead for SB-5-1-2, SB-5 (Composite), and SB-6-0-1 had TCLP lead concentrations of "not detected (ND)", 0.53 mg/L, and 0.82 mg/L, respectively. SB-5-1-2, SB-5 (Composite), and SB-6-0-1 have lead concentrations at levels that classify them as California Hazardous. The soil from the area represented by SB-5 and SB-6 may be pre-classified as California Hazardous for disposal at a Class I Landfill.

Six of the samples (SB-5-2-3, S-5 Composite, SB-6-0-1, SB-6-1-2, SB-7-0-1, and SB-7-1-2) exceeded the residential ESLs for lead. Four of the six (SB-5 Composite, SB-6-0-1, SB-6-1-2, and SB-7-1-2) were also above the exposure to construction workers ESLs. One of the samples (SB-6-1-2) was above the ESLs for commercial/industrial land use. However, as stated above, because soil from the area represented by SB-5 and SB-6 may be pre-classified as California Hazardous for disposal at a Class I Landfill, and the soil in these areas will not be considered for reuse. All the other samples were below the ESLs/CHHSLs for residential, commercial/industrial land use, and construction worker exposure levels.

Soil samples SB-5 (Composite), SB-12 (Composite), and SB-15 (Composite) were analyzed for CAM-17 metals, among other COCs, and had detectable arsenic concentrations of 6.7 mg/kg, 5.3 mg/kg, and 8.0 mg/kg, respectively, which are above the ESLs for residential use, commercial/industrial use, and construction worker safety. Soil samples SB-5 (Composite), SB-12 (Composite), and SB-15 (Composite) were also had detectable chromium concentrations of 32 mg/kg, 43 mg/kg, and 49 mg/kg, respectively, which are above the ESLs for residential use, commercial/industrial use, and construction worker safety. The arsenic and chromium levels at SB-12 (Composite) and SB-15 (Composite) do not exceed the STLC limit. Therefore, the soils may be pre-classified as non-hazardous for disposal at a Class III Landfill, consistent with CCR Title 22 §66262.11 waste classification. As noted in Section 3.2, the lead for SB-5 (Composite) had a lead concentration of 180 mg/kg and a TCLP lead concentration of 0.53 mg/L. SB-5 (Composite) is at a level that classifies it as "California Hazardous," but not "RCRA Hazardous." The lead levels at SB-5 (Composite) exceed the ESLs for residential use, commercial/industrial use, and construction worker safety. The soil from the area represented by SB-5 (Composite) may be pre-classified as "California Hazardous" for disposal at a Class I Landfill.

August 2019 Page 635 of 792

The contractor doing the work for the City should prepare a Project-specific Lead Compliance Plan (CCR Title 8, §1532.1, the "Lead in Construction" standard) to minimize worker exposure to lead-containing soil. The plan should include protocols for environmental and personnel monitoring, requirements for personal protective equipment, and other health and safety protocols and procedures for the handling of lead-containing soil.

Prior to implementation of ground-disturbing activities, the City shall hire a qualified professional to prepare and implement a Hazardous Materials Action Plan. The Plan shall identify the known hazards, describe hazard recognition and testing measures for construction workers, identify personal protective equipment, and describe waste handling and disposal procedures, as specified in applicable regulations and best practices.

3.6.2 Worker Safety

The following Federal and State regulations govern the protection of worker safety at potential hazardous material sites:

- OSHA Hazardous Waste Operations and Emergency Response regulations (29 CFR 1910.120)
- OSHA Worker education and training (Hazard Communication Standard) 29 CFR 1910.1200, 1915.1200, 1917.28, 1918.90, and 1926.59
- General Industry OSHA 29 CFR 1910; 1910.1018 (Inorganic Arsenic), 1910.1025 (Lead), 1910 Subpart Z (Toxic and hazardous substances), and 1926 Subpart D (Occupational health and environmental controls)
- Construction Industry OSHA 29 CFR 1926; 1926.62 (Lead), 1926 Subpart Z (Toxic and hazardous substances), 1926.1118 (Inorganic Arsenic)
- Hazardous Waste Control Act (California Health and Safety Code, Section 25100 et seq.), California Code of Regulations (CCR) Title 26

August 2019 Page1636 of 792

WRECO P18121

- HAZWOPER (§ 5192) Title 8 CCR Division 1, Chapter 4, Subchapter 7, Group 16, Article 109 (Appendices)
- General Industry Safety Orders -Title 8 CCR 5214 (Inorganic Arsenic)
- Environmental Health Standards for Management of Hazardous Waste-Title 22 CCR Division 4.5
- Lead Standard for the Construction Industry 29 CFR 1926.62

Arsenic - Arsenic is a naturally-occurring element that is often detected in soil at concentrations that equal or exceed regulatory screening levels for both residential and industrial soil. The DTSC is aware of the ubiquitous nature of arsenic in California soil and generally does not consider concentrations of arsenic within the range of naturally occurring background levels to be a concern. Soil cleanup guidelines for arsenic vary widely in the USA, ranging from 0.039 to 40 mg/kg.

Lead - Based on the analytical results of this ADL Survey, soil samples collected at the 15 boring locations along N 12th St Project corridor, did not contain total lead in excess of the California TTLC of 1,000 mg/kg. The standard CA-WET soluble lead test results indicate that some soil concentrations are in excess of the California STLC of 5 mg/L (3 of the 9 samples analyzed for soluble lead by CA-WET at six locations along the Project corridor). The TCLP test results did not contain lead in excess of threshold for RCRA hazardous waste of 5 mg/L.

August 2019 Page 2637 of 792

4 PSI-ADL RECOMMENDATIONS SUMMARY

Description	Evidence of Potential REC	Recommended Action(s)		
Shallow soil with lead concentrations exceeding the STLC limit (ADL)	Soil borings SB-5-1-2, SB-5 (Composite), and SB-6-0-1 had lead concentrations above the STLC limit (5 mg/L), which at levels that classifies them as "California Hazardous Waste,". but not "RCRA Hazardous."	The shallow soil from the intersection of B St and N 12th St, near SB-5 and SB-6, can be pre-classified as (Non-RCRA) California Hazardous Waste. Soil from these areas will need to be segregated in stockpiles, and disposed of at a Class I Landfill (per Section 25117/25141 of the California Health and Safety Code).		
Shallow soil with lead concentrations exceeding RWQCB ESLs (ADL)	The soil borings SB-7-0-1 and SB-7-1-2 had lead concentrations that exceeded the residential and construction worker ESLs for lead. Soil sample SB-7-1-2 also exceeded the exposure to construction workers ESL.	The shallow soil from the area represented by boring SB-7-0-1 and SB-7-1-2 will not be reused at any offsite locations. The soil can be reused for commercial/industrial purposes or disposed at a Class II or Class III Landfill.		
Shallow soil with lead below all limits (ADL)	All the other soil borings along the N 12th St corridor had lead concentrations below the TTLC/STLC and RWQCB ESLs for residential, commercial/industrial land use, and exposure to construction workers and considered Non-Hazardous.	The shallow soil from the areas near the other borings had lead concentrations that were below all limits, and can be reused along the corridor or disposed at a Class III Landfill.		
Shallow soil samples with arsenic and chromium	The composite samples for borings SB-12 and SB-15 were analyzed for CAM-17 metals, among other COCs, and had detectable arsenic concentrations of 5.3 and 8.0 mg/kg, respectively, which are above all the RWQCB ESLs. In addition, composite samples SB-12 and SB-15 also had detectable chromium concentrations of 43 and 49 mg/kg, respectively, which are above all the RWQCB ESLs. for residential use, commercial/ industrial use, and construction worker safety. The arsenic and chromium levels at SB-12 and SB-15 do not exceed the TTLC/STLC limits.	Market State of the Control of the C		
Yellow Traffic Stripe Removal	Potential lead and heavy metals associated with pavement striping. Implementation of improvements may require the removal and disposal of yellow traffic striping and pavement marking materials (paint, thermoplastic, permanent tape, and temporary tape). Yellow paints made prior to 1995 may exceed hazardous waste criteria under Title 22 CCR and require disposal in a Class I disposal site.	Abate striping on N 12th St prior to construction following DOT SSPs: Caltrans SSP 14-11.12 (10/19/2018) - Remove Yellow Traffic Stripe and Pavement Marking with Hazardous Waste Residue - Requires proper management of hazardous waste residue and a lead compliance plan. Caltrans SSP 84-9.03C (10/19/2018) - Remove Traffic Stripes and Pavement Markings Containing Lead - Requires a lead compliance plan for removal when residue is non-hazardous. Used for new yellow paints and all other colors of paint.		

August 2019 Pages 639 of 792

5 LIMITATIONS

The scope of a PSI-ADL Study includes verification of RECs based upon environmental testing. As is the case for any project that proposes excavation, the potential exists for unknown hazardous contamination to be revealed during Project construction (such as previous contamination from a previous business).

The PSI-ADL Study for the Project corridor located in Sacramento, California, was performed in general accordance with the ASTM E1903-11 Standard Guide for Environmental Site Assessments: Phase II Environmental Site Assessment Process. All readily available materials pertaining to the Project corridor were reviewed prior to performing the investigation and used to help prepare this report. This assessment is not a full-scale environmental site investigation to prove that the Project corridor is environmentally devoid of hazardous or toxic materials. Samples were collected in specific locations for the new Complete Street construction to determine baseline concentrations of potential COCs in the Project corridor.

This PSI-ADL Study consists of professional opinions and recommendations made in accordance with generally-accepted environmental principles and practices. The conclusions are based upon an evaluation of the information gathered and analytical data from the soil samples collected from the Project corridor area. This PSI-ADL Study does not provide any implied or expressed guarantees regarding the characteristics or environmental conditions at the Project corridor area.

Opinions given in this PSI-ADL Study, relative to the potential for hazardous materials to exist within the study area, are based upon the information resulting from the field work con and from the ISA Report (Blackburn Consulting 2017). The findings and conclusions in this report are based solely on the limited scope of the PSI-ADL Study, and it is not warranted that the Project corridor does not include hazardous materials or petroleum hydrocarbon releases in areas that weren't tested or discussed in this report.

This PSI-ADL Study is not intended to identify ALL hazards or unsafe conditions, or to imply that others do not exist. This soil sampling and testing investigation was planned and implemented based on a mutually agreed scope of work and WRECO's experience in performing this type of assessment.

WRECO has performed this investigation in a professional manner using the degree of skill and care exercised for similar projects under similar conditions, by reputable and competent environmental consultants. WRECO shall not be responsible for conditions or consequences arising from relevant facts that were not identified or disclosed at the time that this investigation was conducted.

WRECO further states that no warranties, expressed or implied are made regarding the quality, fitness, or results to be achieved because of this report or impacted by information not properly disclosed to WRECO at the time of this report. In addition, no responsibility is assumed for the control or correction of conditions or practices existing at the premises of the client.

August 2019 Page 641 of 792

Preliminary Site Investigation-Aerially Deposited Lead Study North 12th Street Complete Streets Project City of Sacramento, Sacramento County, California

WRECO P18121

Verification of material quantities is the responsibility of the contractor that will be performing construction activities at the Project corridor. It is the responsibility of the construction contractor to determine the appropriate waste management and disposal actions for shallow soil within the Project corridor. Hazardous materials must be handled in strict accordance with the various federal, state, and local regulations. Failure to abide by these regulations can result in penalties to both the contractor as well as the property owner.

August 2019 Pages 642 of 792

6 REFERENCES

- Blackburn Consulting. July 2017. Initial Site Assessment North 12th Street Complete Streets Project.
- California Department of Water Resources (CA DWR). 2019. *GeoTracker Database*. http://geotracker.waterboards.ca.gov (Last accessed: February 12, 2019).
- CA DWR. 2004. Bulletin 118. Sacramento River Hydrologic Region. Sacramento Valley Groundwater Basin. South American Subbasin.

 https://water.ca.gov/LegacyFiles/pubs/groundwater/bulletin_118/basindescriptions/5-21.65.pdf (Last Accessed: February 11, 2019).
- CA DWR. 2019. *Groundwater Information Center Interactive Map Application*. Online: https://gis.water.ca.gov/app/gicima/> (Last Accessed: February 11, 2019).
- California Environmental Protection Agency, 2009, *Use of California Human Health Screening Levels (CHHSL) in Evaluation of Contaminated Properties*. https://oehha.ca.gov/media/downloads/risk-assessment/california-human-health-screening-levels-chhsls/chhslstableall_0.pdf (Last Accessed: January 31, 2019).
- California Geological Survey (CGS). 2000. General Location Guide for Ultramafic Rocks in California Areas Likely to Contain Naturally Occurring Asbestos, CGS Open File Report 2000-19.
- City of Sacramento. 2019. Capital Improvement Projects: Current Projects. https://www.cityofsacramento.org/Public-Works/Engineering-Services/Projects/Current-Projects/N-12th-St-Improvements (Last accessed: February 20, 2019).
- Google. 2019. Google Earth Pro.
- Gutierrez, Carlos I. 2011. *Preliminary Geologic Map of the Sacramento 30' x 60' Quadrangle, California*. California Geological Survey. Department of Conservation. ftp://ftp.consrv.ca.gov/pub/dmg/rgmp/Prelim_geo_pdf/Sacramento100k_preliminary_map.pdf (Last Accessed: January 31, 2019).
- Lawrence Berkeley National Laboratory (LBNL) Environmental Restoration Program. 2009. Analysis of Background Distributions of Metals in the Soil at Lawrence Berkeley National Laboratory. Prepared by David Diamond, Davis Baskin, Dennis Brown, Loren Lund, Julie Najita, and Iraj Javandel. June 2002 - updated April 2009.
- Naval Facilities Engineering Command (NAVFAC) et. al. April 2002. Guidance for Environmental Background Analysis (NFESC User's Guide UG-2049-ENV).

August 2019 Page 643 of 792

- Office of Environmental Health Hazard Assessment (OEHHA). 2005 (revision). Human-Exposure-Based Screening Numbers Developed to Aid Estimation of Cleanup Costs for Contaminated Soil. http://www.oehha.ca.gov/risk/Sb32soils05.html (Last Accessed: January 31, 2009).
- Olmstead, F.H., and Davis, G.H. 1961. Geologic Features and Ground-water Storage Capacity of the Sacramento Valley California: U.S. Geological Survey Water Supply Paper 1497.
- Sacramento County Water Agency, et al. February 2006. Central Sacramento County Groundwater Management Plan.
- San Francisco Bay Regional Water Quality Control Board (SFBRWQCB). 2016. *User's Guide: Derivation and Application of Environmental Screening Levels.* Interim Final 2016.
- SFBRWQCB. 2019. Environmental Screening Levels.
 https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/ESL/new/ESL_Summary Tables 24Jan19 Rev1.pdf (Last Accessed: February 19, 2019).
- Shacklette, H.T., and J.G. Boerngen 1984. Element Concentrations in Soils and Other Surficial Materials, Conterminous United States, U.S. Geological Survey Professional Paper 1270.
- Solt, M. J., Deocampo, D. M., & Norris, M. 2015. Spatial distribution of lead in Sacramento, California, USA. International Journal of Environmental Research and Public Health. 12(3), 3174-87. doi:10.3390/ijerph120303174.

 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4377958/#_sec2title (Last Accessed: February 21, 2019).
- Natural Resources Conservation Service Soils (NRCS). 2019. *Web Soil Survey*. https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx (Last Accessed: February 20, 2019).
- United States Environmental Protection Agency. 2016. *ProUCL Software Version 5.1*. https://www.epa.gov/land-research/proucl-software (Last Accessed: February 20, 2019).
- United States Environmental Protection Agency. October 2015. *ProUCL Software Version 5.1 Technical Guide*. https://www.epa.gov/sites/production/files/2016-05/documents/proucl_5.1_tech-guide.pdf> (Last Accessed: February 20, 2019).
- Wagner, D.L., Bortugno, E.J., and McJunkin, R.D. 1991. Geologic Map of the Sacramento Qudrangle: California Division of Mines and Geology Regional Geologic Map Series, 1:250,000 scale.

August 2019 Page 644 of 792

WRECO P18121

Appendix A City of Sacramento Encroachment Permit

August 2019 Page 645 of 792

ENCROACHMENT/EXCAVATION PERMIT

201805081

APPLICANT:				PHONE:	925) 941-0017	-1	FILE NUM T15165 (
ADDRESS:	75. 4.	Ipine Road		maka.		-11	CIP Numb	
	Walnut	Creek, Ca		64596		-		
				ion Permit	o perform the follow	ing:	PERMIT D 12/14/20	
2,000		rder or job numbe	A Control of the Control			- _	COMPLETIO	NEATE
2. Location	or work:	from N 12TH ST	ST & RICHARI	OS BLVD	to 12TH ST & H		COMPLETION	NDATE
3. General	description	on of work to be d	one:					
(a) Exca	vations:	0	0	0	4,400			
		Width	Depth	Length	Surface Material	- 11		
(b) Cond	luit:		0				-	
		Type: (PVC, Metal, e	etc. Diameter	Conv	eying: (Water, Gas, e	En(gineering	
(c) Other:	15 Shal	low Soil Boring w/	Coring - Direct Pu	sh Drilling		Cor	nst Inspection	
, ,		(Sidewa	alk, Sign, Driveway	etc.)		Tra	offic	
4. Estimate	d: Start l	Date <u>1/17/2</u>	019 Days fo	or Completi	o <u>n 2</u>	Ele	ct	
5. Person fa	amiliar wi	th details:						
Name:	Xavier (Green - Peneco	re Drilling In	Phone No:	<u>(530) 661-3600</u>			Days
6. Applicant	ts Inspect	or, Contractor, Fo	reman or Super	isor as app	oropriate:			
Name:	Omar, \	VRECO		Phone No.:	<u>(916) 513-7428</u>	Tre	ench Cut Fee: \$	
		al Conditions (a					Ordinance #	83070
		oachment-Stre ırting work.	etuse Permit H	lelp Desk	808-6810 one		INSPECT	TOR
						╼┩┃ ̄	LIFFRII	
			D	ATE: <u>1</u>	2/14/2018		(916) 804-	-8363
			"\$	PECIAL P	ROVISIONS"			

Copy of USA ticket required. All USA markings shall be removed upon completion of project.

Traffic Control Plan must be submitted and approved prior to the start of work. The Traffic Control Plan is required to be on site with this permit at all times. Failure to comply may result in a Fine.

City of Sacramento Contact: Zuhair Amawi (916) 808-7620

Engineering Services Division Construction Inspection Services 915 I Street, RM 2000 Sacramento, CA 95814

ENGINEER

Page 648 of 792

IMPROVEMENT SECURITY

Phone: 916-808-6810 Fax: 916-448-8450

Permit Number

APPLICATION FOR STREET USE/ ENCROACHMENT PERMIT

APPLICANT (OWNER): WI	RECO	PHO	ONE: 925-941-0017
	Road, Walnut Creek, CA		ZIP:94596
request for permission for m	ny contractor to perform the described	work in the City right of w	A CONTRACT OF THE PARTY OF THE
m r marringer, to attended to	MADE FOR AN ENCROACHMENT PI		E FOLLOWING:
	RK ORDER JOB NUMBER: P18121		ichards Blud, and U Street
2. LOCATION OF WO	RK: North 12th Street Name of Road / Address	between _	ichards Blvd. and H Street Cross Road
 GENERAL DESCRI (a) EXCAVATIONS: 	PTION OF WORK TO BE DONE:		
(a) EXONVATIONS.	Width Depth	Length S	Surface Material
(b) CONDUIT:	(Type: PVC, metal etc.)		onveying: Water, Gas, etc)
(c) OTHER:	15 shallow soil boring wit (Sidewalk, Sign, Driveway repair,		push drilling Description
4. ESTIMATED START [DATE: Jan 17,18, 2019 DAYS F	OR COMPLETION	2 days
5. CONTRACTOR'S INF			F00 004 0000
NAME OF FIRM:		PHONE NO	
CONTACT NAME: Xav	vier Green EMAII	: Xavier@penecor	e.com
ADDRESS:	220 N. East st. Woodland,	CA 95776 LICENS	E NO.: C57 906899
1 SET OF THE TR. DESCRIPTION OF (PROGRESS WILL) PROOF OF INSURPERMITS WILL BE KEPT OF THE CONSTRUCTION INSURANT OF WORK, ALL	EPLAN. (MINIMUM 8 ½ X 11 SIZE I AFFIC CONTROL PLAN SHOWING SCHEDULE OF WORK TO BE PEI BE MONITORED, REVIEWED ANI RANCE (ACCORD AND ADDITIONA ON FILE A MAXIMUM OF 60 DAYS. Y SPECTION HELP DESK AT 808-68 REQUESTS FOR ACTIVATION R WEEK. UPON APPROVAL, WORK	PEDESTRIAN PATH OR REPORMED. DAY, WEEL DAY, A MINIMUM OF ON RECEIVED BY MONDAY, MAY BEGIN AS EAR	OR SHIFT. EEKLY BASIS.) MENT.) IF REQUIRED OUR PERMIT BY CALLING IE WEEK PRIOR TO THE
	THIS PROJECT WILL BE NOTIFIED	BY DHONE OF EMAIL	

FILE NUMBER

PERMIT FEE

Engineering Services Division Construction Inspection Services 915 I Street, RM 2000 Sacramento, CA 95814

> Phone: 916-808-6810 Fax: 916-448-8450

> > Permit Number

APPLICATION FOR STREET USE/ ENCROACHMENT PERMIT

APPLICANT (OWNER):			Р	HONE: 925-941-0017
ADDRESS: 1243 Alpine	Road, Walnut	Creek, CA		ZIP: 94596
			work in the City right o	f way adjacent to my property
SIGNED:				DATE:
	L'ESPERSIONES.			e Control Days I.v
APPLICATION IS HEREBY			arthur, of a fact to be suite	THE FOLLOWING:
APPLICANT'S WO				Dishards Blud, and U Street
2. LOCATION OF WO)RK: NORTH 12th	e of Road / Address	between	Richards Blvd. and H Street
3. GENERAL DESCR	RIPTION OF WORK T	O BE DONE:		
(a) EXCAVATIONS	3:			
***********	Width	Depth	Length	Surface Material
(b) CONDUIT:	(Type: PVC, m	etal etc.)	Diameter	(Conveying: Water, Gas, etc)
(c) OTHER:	15 shallo	w soil boring	with coring using	ng direct push drilling
	(Sidewalk, Sign	, Driveway repair,	etc.)	Description
4. ESTIMATED START	DATE: Jan 17,18	, 2019 DAYS F	OR COMPLETION	2 days
5. CONTRACTOR'S IN				
NAME OF FIRM:	Penecore I	Drilling, Inc.	PHONE	NO.: 530.661.360
CONTACT NAME: Xa	vier Green	EMAI	Xavier@penec	ore.com
ADDRESS:	220 N. Eas	t st. Woodland	CA 95776 LICE	NSE NO.: C57 906899
APPLICANT CHECK LIST			G. COLLO	NSE NO.: COT COCCO
	TE PLAN.(MINIMUN			LOS TONIEL
			PEDESTRIAN PATH RFORMED, DAY, WE	
(PROGRESS WIL	L BE MONITORED,	REVIEWED AN	DAPPROVED ON A	WEEKLY BASIS.)
PROOF OF INSU	RANCE (ACCORD)	AND ADDITIONA	L INSURED ENDORS	SEMENT.) IF REQUIRED
				YOUR PERMIT BY CALLIN
				ONE WEEK PRIOR TO TH DAY WILL BE REVIEWE
	WEEK, UPON AP	PROVAL, WORK	MAY BEGIN AS E	ARLY AS SATURDAY. TH
SOM INCT PERSON FOR	THIS PROJECT W	ILL BE NOTIFIEL	BT FROME OR EM	NL.
		STAFF USE ONL	Y	

FILE NUMBER

\$

IMPROVEMENT SECURITY

ENGINEER

Page 649 of 792

PERMIT FEE

Page 1 of 5

Page 2 of 5

Page 4 of 5

Page 5 of 5

California MUTCD 2012 Edition (FHWA's MUTCD 2009 Edition, as amended for use in California)

Notes for Figure 6H-28—Typical Application 28 Sidewalk Detour or Diversion

Standard:

 When crosswalks or other pedestrian facilities are closed or relocated, temporary facilities shall be detectable and shall include accessibility features consistent with the features present in the existing pedestrian facility.

Guidance:

- 2. Where high speeds are anticipated, a temporary traffic barrier and, if necessary, a crash cushion should be used to separate the temporary sidewalks from vehicular traffic.
- 3. Audible information devices should be considered where midblock closings and changed crosswalk areas cause inadequate communication to be provided to pedestrians who have visual disabilities.

Option:

- 4. Street lighting may be considered.
- 5. Only the TTC devices related to pedestrians are shown. Other devices, such as lane closure signing or ROAD NARROWS signs, may be used to control vehicular traffic.
- 6. For nighttime closures, Type A Flashing warning lights may be used on barricades that support signs and close sidewalks.
- 7. Type C Steady-Burn or Type D 360-degree Steady-Burn warning lights may be used on channelizing devices separating the temporary sidewalks from vehicular traffic flow.
- 8. Signs, such as KEEP RIGHT (LEFT), may be placed along a temporary sidewalk to guide or direct pedestrians

California MUTCD 2012 Edition (FHWA's MUTCD 2009 Edition, as amended for use in California)

Figure 6H-28. Sidewalk Detour or Diversion (TA-28)

Typical Application 28

Note: See Tables 6H-2 and 6H-3 for the meaning of the symbols and/or letter codes used in this figure.

IMPORTANT NOTE: Sidewalk (Pedestrian) Detour or Diversion shall be ADA compliant and shall comply with City of Sacramento "Sidewalk Closure Policy".

California MUTCD 2012 Edition (FHWA's MUTCD 2009 Edition, as amended for use in California)

Notes for Figure 6H-6—Typical Application 6 Shoulder Work with Minor Encroachment

Guidance:

- 1. All lanes should be a minimum of 10 feet in width as measured to the near face of the channelizing devices.
- The treatment shown should be used on a minor road having low speeds. For higher-speed traffic conditions, a lane closure should be used.

Option:

- 3. For short-term use on low-volume, low-speed roadways with vehicular traffic that does not include longer and wider heavy commercial vehicles, a minimum lane width of 9 feet may be used.
- 4. Where the opposite shoulder is suitable for carrying vehicular traffic and of adequate width, lanes may be shifted by use of closely-spaced channelizing devices, provided that the minimum lane width of 10 feet is maintained.
- 5. Additional advance warning may be appropriate, such as a ROAD NARROWS sign.
- Temporary traffic barriers may be used along the work space.
- 7. The shadow vehicle may be omitted if a taper and channelizing devices are used.
- 8. A truck-mounted attenuator may be used on the shadow vehicle.
- 9. For short-duration work, the taper and channelizing devices may be omitted if a shadow vehicle with a activated high-intensity rotating, flashing, oscillating, or strobe lights is used. a
- Vehicle hazard warning signals may be used to supplement high-intensity rotating, flashing, oscillating, or strobe lights.

Standard:

- 11. Vehicle-mounted signs shall be mounted in a manner such that they are not obscured by equipment or supplies. Sign legends on vehicle-mounted signs shall be covered or turned from view when work is not in progress.
- 12. Shadow and work vehicles shall display high-intensity rotating, flashing, oscillating, or strobe lights.
- 13. Vehicle hazard warning signals shall not be used instead of the vehicle's high-intensity rotating, flashing, oscillating, or strobe lights.
- 14.Note 3 shall not be applicable for State highways. Note #1 shall be used instead for State highways.

California MUTCD 2012 Edition (FHWA's MUTCD 2009 Edition, as amended for use in California)

Figure 6H-6. Shoulder Work with Minor Encroachment (TA-6)

IMPORTANT NOTE: When existing accomodations for bicycle travel are distributed orclosed in a long-term duration project and the roadway width is inadequate for all bicyclists and motor vehicles to travel side by side, the Bicycle Crossing (W11-1) sign and the SHARE THE ROAD (W16-1P) plaque should be used to advise motorists of the presense of bicyclists in the travel way lanes.

Page 660 of 792

California MUTCD 2012 Edition (FHWA's MUTCD 2009 Edition, as amended for use in California)

Table 6H-1(CA). Index to Typical Applications

Typical Application Description	Typical Application Number	
Work affecting Pedestrian and Bicycle Facilities (see Section 6G.05)		
Shoulder Closure on Urban (Low Speed) Locations to Accommodate Bicyclists	TA-101(CA)	
Lane Closure on Freeway, Expressway, Rural and Urban (High Speed) Locations to Accommodate Bicyclists	TA-102(CA)	
Detour for Bike Lane on Roads with Closure of One Travel Direction	TA-103(CA)	
Right Lane and Bike Lane Closure on Far Side of Intersection	TA-104(CA)	
Work Within the Traveled Way of a Two-Lane Highway (see Section 6G.10)		
Lane Shift on Road with Low Traffic Volumes	TA-105(CA)	

Table 6H-2. Meaning of Symbols on Typical Application Diagrams

Table 6H-3. Meaning of Letter Codes on Typical Application Diagrams

Dead Time	Distance Between Signs**				
Road Type	A	В	C		
Urban (low speed)* - 25 mph or less	100 feet	100 feet	100 feet		
Urban (low speed)* - more than 25 mph to 40 mph	250 feet	250 feet	250 feet		
Urban (high speed)* - more than 40 mph	350 feet	350 feet	350 feet		
Rural	500 feet	500 feet	500 feet		
Expressway / Freeway	1,000 feet	1,500 feet	2,640 feet		

^{**} The column headings A, B, and C are the dimensions shown in Figures 6H-1 through 6H-46. The A dimension is the distance from the transition or point of restriction to the first sign. The B dimension is the distance between the first and second signs. The C dimension is the distance between the second and third signs. (The "first sign" is the sign in a three-sign series that is closest to the TTC zone. The "third sign" is the sign that is furthest upstream from the TTC zone.)

California MUTCD 2012 Edition (FHWA's MUTCD 2009 Edition, as amended for use in California)

Table 6H-4. Formulas for Determining Taper Length

Speed (S)	Taper Length (L) in fee		
40 mph or less	L = WS ²		
45 mph or more	L= WS		

Where: L = taper length in feet

W = width of offset in feet

S = posted speed limit, or off-peak 85th-percentile speed prior to work starting, or the anticipated operating speed in mph

Table 6H-4(CA). Taper Length Criteria for Temporary Traffic Control Zones (for 12 feet Offset Width)

Speed*			per Length** ffset 12 feet (W)	
S (mph)	Merging L (feet)	Shifting L/2 (feet)	Shoulder L/3 (feet)	Down Stream (feet)***
20	80	40	27	50
25	125	63	42	50
30	180	90	60	50
35	245	123	82	50
40	320	160	107	50
45	540	270	180	50
50	600	300	200	50
55	660	330	220	50
60	720	360	240	50
65	780	390	260	50
70	840	420	280	50

^{* -} Posted speed limit, off-peak 85th-percentile speed prior to work starting, or the anticipated operating speed in mph.

For speeds of 45 mph or more, L=WS

Where: L = taper length in feet

W = width of offset in feet

S = posted speed limit, off-peak 85th-percentile speed prior to work

starting, or the anticipated operating speed in mph

^{** -} For other offsets use the following merging taper length formula for L: For speeds of 40 mph or less, L=WS²/60

^{*** -} Maximum downstream taper length is 100 feet. See Section 6C.08.

CERTIFICATE OF LIABILITY INSURANCE

DATE (MM/DD/YYYY) 11/13/2018

THIS CERTIFICATE IS ISSUED AS A MATTER OF INFORMATION ONLY AND CONFERS NO RIGHTS UPON THE CERTIFICATE HOLDER. THIS CERTIFICATE DOES NOT AFFIRMATIVELY OR NEGATIVELY AMEND, EXTEND OR ALTER THE COVERAGE AFFORDED BY THE POLICIES BELOW. THIS CERTIFICATE OF INSURANCE DOES NOT CONSTITUTE A CONTRACT BETWEEN THE ISSUING INSURER(S), AUTHORIZED REPRESENTATIVE OR PRODUCER. AND THE CERTIFICATE HOLDER.

IMPORTANT: If the certificate holder is an ADDITIONAL INSURED, the policy(ies) must have ADDITIONAL INSURED provisions or be endorsed. If SUBROGATION IS WAIVED, subject to the terms and conditions of the policy, certain policies may require an endorsement. A statement on this certificate does not confer rights to the certificate holder in lieu of such endorsement(s).

PRODUCER License # 0B50501	CONTACT Teresa Galart			
Armstrong & Associates 239 W Court St, Bldg A	PHONE (A/C, No, Ext): (530) 668-2777	FAX (A/C, No): (5	30) 668-2779	
Woodland, CA 95695	E-MAIL ADDRESS:			
	INSURER(S) AFFORDING CO	VERAGE	NAIC#	
	INSURER A: Colony Insurance Company			
INSURED	INSURER B: West American Insurance Company			
TSA Drilling Inc.	INSURER C: Wesco Insurance Compa	25011		
Penecore Drilling 220 North East St	INSURER D : Ohio Security Insurance	24082		
Woodland, CA 95776	INSURER E :			
	INSURER F:			

COVERAGES CERTIFICATE NUMBER: REVISION NUMBER:

THIS IS TO CERTIFY THAT THE POLICIES OF INSURANCE LISTED BELOW HAVE BEEN ISSUED TO THE INSURED NAMED ABOVE FOR THE POLICY PERIOD INDICATED. NOTWITHSTANDING ANY REQUIREMENT, TERM OR CONDITION OF ANY CONTRACT OR OTHER DOCUMENT WITH RESPECT TO WHICH THIS CERTIFICATE MAY BE ISSUED OR MAY PERTAIN, THE INSURANCE AFFORDED BY THE POLICIES DESCRIBED HEREIN IS SUBJECT TO ALL THE TERMS, EXCLUSIONS AND CONDITIONS OF SUCH POLICIES. LIMITS SHOWN MAY HAVE BEEN REDUCED BY PAID CLAIMS.

		USIONS AND CONDITIONS OF SUC								
INSR LTR		TYPE OF INSURANCE	ADDI	SUBR	POLICY NUMBER	POLICY EFF (MM/DD/YYYY)	POLICY EXP (MM/DD/YYYY)	LIMIT	s	
A	X	COMMERCIAL GENERAL LIABILITY						EACH OCCURRENCE	\$ 1,000,0	000
		CLAIMS-MADE X OCCUR	X		PACEP305708	08/05/2018	08/05/2019	DAMAGE TO RENTED PREMISES (Ea occurrence)	\$ 100,0	000
	X	Pollution included	_					MED EXP (Any one person)	\$ 5,0	000
	X	Professional include	_					PERSONAL & ADV INJURY	\$ 1,000,0	000
	GEI	N'L AGGREGATE LIMIT APPLIES PER:						GENERAL AGGREGATE	\$ 2,000,0	000
	X	POLICY PRO- LOC						PRODUCTS - COMP/OP AGG	\$ 2,000,0	000
		OTHER:						Poll/Prof each	\$ 1,000,0	000
В	AUT	TOMOBILE LIABILITY		7.1				COMBINED SINGLE LIMIT (Ea accident)	\$ 1,000,0	000
1	X	ANY AUTO		1	BAW56829954	08/05/2018	08/05/2019	BODILY INJURY (Per person)	\$	
		OWNED SCHEDULED AUTOS						BODILY INJURY (Per accident)	\$	
1 6	1	HIRED AUTOS ONLY NON-OWNED AUTOS ONLY						PROPERTY DAMAGE (Per accident)	\$	
									\$	
A	14	UMBRELLA LIAB X OCCUR			NEWSON CO.			EACH OCCURRENCE	\$ 9,000,0	
	X	EXCESS LIAB CLAIMS-MAD	E	l + 1	EXC305709	08/05/2018	08/05/2019	AGGREGATE	\$ 9,000,0	000
		DED RETENTION \$	1 2						\$	
С	WOR	RKERS COMPENSATION DEMPLOYERS' LIABILITY		1	Missingle			X PER OTH- STATUTE ER		
	ANY	PROPRIETOR/PARTNER/EXECUTIVE	N/A		WWC3364623	08/01/2018	08/01/2019	E.L. EACH ACCIDENT	\$ 1,000,0	
- 1	(Mar	ndatory in NH)	1 7					E.L. DISEASE - EA EMPLOYEE		
7		s, describe under CRIPTION OF OPERATIONS below	11		LANCE OF THE PARTY			E.L. DISEASE - POLICY LIMIT		
D	Pro	perty	1		BKS56829954	08/05/2018	08/05/2019	Building	481,	500
D	Equ	uipment Floater		1	BKS56829954	08/05/2018	08/05/2019	Rented Leased Borrow	50,0	000

DESCRIPTION OF OPERATIONS / LOCATIONS / VEHICLES (ACORD 101, Additional Remarks Schedule, may be attached if more space is required) RE: Encroachment Permit City of Sacramento is named additional insured per attached endorsement.

CERTIFICATE HOLDER	CANCELLATION
City of Sacramento Dept of Public Works 915 I Street RM 2000	SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN ACCORDANCE WITH THE POLICY PROVISIONS.
Sacramento, CA 95814	AUTHORIZED REPRESENTATIVE
	Mattin Christiang Page 663 of 792

THIS ENDORSEMENT CHANGES THE POLICY. PLEASE READ IT CAREFULLY.

ADDITIONAL INSURED – OWNERS, LESSEES OR CONTRACTORS – SCHEDULED PERSON OR ORGANIZATION

This endorsement modifies insurance provided under the following:

EnviroPACE Insurance Policy

SCHEDULE

Name Of Additional Insured Person(s) Or Organization(s)	Location(s) Of Covered Operations
ALL PERSON(S) OR ORGANIZATION(S) WHERE THIS ENDORSEMENT IS REQUIRED BY CONTRACT.	ALL PROJECT LOCATIONS WHERE THIS ENDORSEMENT IS REQUIRED BY CONTRACT.

- A. Section XX. WHO IS AN INSURED, Coverage Part 1 and Part 2 is amended to include as an additional insured the person(s) or organization(s) shown in the SCHEDULE above, but only with respect to liability for bodily injury, property damage, personal and advertising injury, environmental damage, or cleanup costs caused, in whole or in part, by:
 - 1. Your acts or omissions; or
 - 2. The acts or omissions of those acting on your behalf;

in the performance of your ongoing operations for the additional insured(s) at the location(s) designated above.

However:

- 1. The insurance afforded to such additional insured only applies to the extent permitted by law; and
- 2. If coverage provided to the additional insured is required by a contract or agreement, the insurance afforded to such additional insured will not be broader than that which you are required by the contract or agreement to provide for such additional insured.
- B. With respect to the insurance afforded to these additional insureds, the following additional exclusions apply:

This insurance does not apply to **bodily injury** or **property damage** occurring after:

- All work, including materials, parts or equipment furnished in connection with such work, on the project (other than service, maintenance or repairs) to be performed by or on behalf of the additional insured(s) at the location of the covered operations has been completed; or
- 2. That portion of **your work** out of which the injury or damage arises has been put to its intended use by any person or organization other than another contractor or subcontractor engaged in performing operations for a principal as a part of the same project.

EPACE101-0814

Includes copyrighted material of Insurance Services Office, Inc.,

Page 1 of 2

with its permission.

WRECO P18121

Appendix B Laboratory Reports

August 2019 Page 665 of 792

January 29, 2019

CLS Work Order #: 19A0904

COC #:

Melissa McAssey WRECO - Walnut Creek 1243 Alpine Rd Suite 108 Walnut Creek, CA 94596

Project Name: North 12th Street Complete Street Project

Enclosed are the results of analyses for samples received by the laboratory on 01/17/19 16:35. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely

James Liang, Ph.D. Laboratory Director

CA SWRCB ELAP Accreditation/Registration number 1233

This page intentionally left blank

ALIFORNIA

ERVICES

		ACKER	PORT			FIELD CONDITIONS THRNAROUND SPECIAL.	TIME IN DAYS INSTRUCTIONS Lead and pH for all 3 individual samples; all other COCs	are to composite the 3 samples into one for analysis			2 5 10		×	×	4		INVOICETU			PCM	200	PRESERVATIVES (1910).	CONTRACTOR AND	TO THE PARTY OF TH			
	and the	GEOTRACKER	FDF REPORT	8		FIELD	TIME II	are to co analysis			*		+	+	#		+	1		+	0.000	PRESE	V	1	H	1	1
	CLS Rancho Cordova											1	+		+		+	-		+	+	4		X		1	2
	Ranche														П		1	1		1	7	V	1	K	N	1	-)
	CLS	STED	səldu	ms £ [[E 5]]	sodiu	100 - Z	[11]6-5	slat:	PW LI	IN.	VD.	+		× H	H	+	+		+	1			F	3		/
		EOUE				-	nsodwo	II O NO	5000000		VSAIDS		×	0	×			1			No.	0 10	A P		TRAIN	+	\
		VSIS	soydu	int Cili	r atreo	- courb	5108-1	Ebv		H4T/O			+		×	H	+	+	Н	+	-	SAMPLE RETE	ALL LAND		NSACON		
		ANALYSIS REQUESTED				- 3	90109	FPA					\neg					T			-	SAMI	1	<u>ک</u> ان	SABITIONS/COMMENTS	l	
	(2 0f 2)	>									Г				H	F	-	Ŧ	Н	+	1	+	1	000	*		1635
	9	umber	Destination Laboratory								CONTAINER	TYPE	acetale	acetak	acctate							California.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1	
		Client Job Number	ation La								COM	NG.	1	in i	60									1	1	7	
		CRE	Destrin								Г	MATRIX			П							1000	AN C	9	DATECTME		
							_					MA	Ros	HOS	To See		_	-	Ц			1000000	SCOMP.	NAMES	11411		
				94596							FIELD	1D.	SB-13	SB-14	SB-18							The second second	2	3 7 7			
										200	NOI	9		П					П	T			- 14		0	Total Control	
	NO.			Creek,		7 X248				ards Blvd	FECAT	Nowe de	E	SB-14-2	88-150				П				1	4	8		
	CLS ID, NO.	:0		Walnut		N-144-K	103602			and Rechi	IDENT		3-1-5	4-1-2	8-1-3								1		H	-	
	C	Report To:		te 108.		Phone - 925-541-6017 X248	s Sheet P		30	ави Аус	SAMPLE IDENTIFICATION		SB-T	1.88-L	-88								1	M	N	4	
	33	Rep		RECO - 1243 Alpine Road, Suite 108, Walnut Creek, CA	, Sec.		opect Name - North, 12th Street Complete Street Project		the Description - ADL/CGCs soil sampling	ite Location - along North 12th St. Surfeeum Ave. and Richards Blvd	SA	8 7 1	SB-13-0-1; SB-13-1-2; Marting	SB-14-0-1' SB-14-1-2' SB-14-2-3'	SB-15-0-1', SB-15-1-2', SB-15-2-3'							V 81	Y	1	M	1	
ZX.	HAIN OF CESTODY			pine Ro	Melista McAssey	nail - metusa mrassey@wreco.com	1th Street	oppo	COC3 soil	infa 12th	-			O SB		+		+	+	H	H	SUSPECTED CONSTITUENTS	GLINGUISHED BY (Supature)	1	24(1)	1	
ABORATORY ERVICES	F CE		tdress	243 At		measie	North 1	utopled Sv - Omar Ragabo	S-ABLA	akong Ne	TIME	STATE OF	3		300							CONST	NED BY	1	RECEIVED AT DAIL	D HV.	
ALIFORN	INC		Same and Address	1-00	opect Manager	-melusa	CName	ed 8y - A	escubuos	ocabon-	DATE	NAME OF TAXABLE PARTY.	5//6	37.6							Constant of the	PECTEI	NOUSE	1000	KIVE	AH GRADIES	

Page 2 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

CAM 17 Metals

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-5 (Composite) (19A0904-19) Soil	Sampled: 01/17/19 12:40	Received: 0	1/17/19 10	6:35					
Antimony	ND	5.0	mg/kg	10	1900547	01/22/19	01/23/19	EPA 6020	
Arsenic	6.7	2.0		n	"	0		- 19	
Barium	130	2.0			"	6		w.	
Beryllium	ND	2.0	**	0	11		-10	· m	
Cadmium	ND	1.0	***						
Chromium	32	2.0			"	0	01/24/19	w	
Cobalt	8.2	2.0	. 0	0	•	n	01/23/19		
Copper	28	2.0			*	· ·			
Lead	180	5.0				6			
Molybdenum	ND	2.0		0	11		-11		
Nickel	30	2.0			*	· ·	6		
Selenium	ND	5.0	- 11				"		
Silver	ND	2.0		0	10				
Fhallium	ND	2.0	"						
Vanadium	42	2.0		n		6			
Zinc	86	5.0	"		"		"	**	
SB-12 (Composite) (19A0904-43) Soil	Sampled: 01/17/19 10:25	Received:	01/17/19	16:35					
Antimony	ND	5.0	mg/kg	10	1900547	01/22/19	01/23/19	EPA 6020	
Arsenic	5.3	2.0				6			
Barium	93	2.0		0		n	6		
Beryllium	ND	2.0		n		w.	**		
Cadmium	ND	1.0		· ·	n.	6		w	
Chromium	43	2.0		0		n	01/24/19		
Cobalt	9.5	2.0	Ü		· ·	w.	01/23/19		
	36	2.0						•	
Copper		100	w		"			w	
	19	5.0							
Lead		5.0 2.0			11				
C opper L ead Molybdenum Nickel	19							· ·	
L ead Molybdenum	19 ND	2.0							

Page 3 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

CAM 17 Metals

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-12 (Composite) (19A0904-43) Soil	Sampled: 01/17/19 10:25	Received:	01/17/19	16:35					
Thallium	ND	2.0	mg/kg	10	1900547	6	01/23/19	EPA 6020	
Vanadium	45	2.0		0	*		11		
Zinc	64	5.0		n	**	0			
SB-15 (Composite) (19A0904-54) Soil	Sampled: 01/17/19 09:00	Received:	01/17/19	16:35					
Antimony	ND	5.0	mg/kg	10	1900547	01/22/19	01/23/19	EPA 6020	
Arsenic	8.0	2.0		n				-11	
Barium	120	2.0	"		"		"		
Beryllium	ND	2.0		0	11	6	4.	10	
Cadmium	ND	1.0	**	0	**				
Chromium	49	2.0	"	"	"	0	01/24/19		
Cobalt	12	2.0		•	*		01/23/19		
Copper	27	2.0		"	"	"	"	"	
Lead	14	5.0		"	"	"	"	"	
Molybdenum	ND	2.0			"	"	"		
Nickel	47	2.0			"	"			
Selenium	ND	5.0	**		"	"	"		
Silver	ND	2.0			"	"	"		
Thallium	ND	2.0	,11		"	"	"		
Vanadium	51	2.0			"	"			
Zinc	50	5.0			"			"	

Page 4 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1-0-1' (19A0904-01) Soil	Sampled: 01/17/19 15:15 Receiv	ed: 01/17/19	16:35						
рН	6.90	1.00	pH Units	1	1900508	01/21/19	01/21/19	EPA 9045C	
SB-1-1-2' (19A0904-02) Soil	Sampled: 01/17/19 15:15 Receiv	ved: 01/17/19	16:35						
рН	7.20	1.00	pH Units	1	1900508	01/21/19	01/21/19	EPA 9045C	
SB-1-2-3' (19A0904-03) Soil	Sampled: 01/17/19 15:15 Receiv	ed: 01/17/19	16:35					417	
рΗ	8.49	1.00	pH Units	1	1900508	01/21/19	01/21/19	EPA 9045C	
SB-2-0-1' (19A0904-05) Soil	Sampled: 01/17/19 15:00 Receiv	ed: 01/17/19	16:35						
рН	8.11	1.00	pH Units	i 1	1900508	01/21/19	01/21/19	EPA 9045C	
SB-2-1-2' (19A0904-06) Soil	Sampled: 01/17/19 15:00 Receiv	ed: 01/17/19	16:35						
рН	7.83	1.00	pH Units	1	1900508	01/21/19	01/21/19	EPA 9045C	
SB-2-2-3' (19A0904-07) Soil	Sampled: 01/17/19 15:00 Receiv	ed: 01/17/19	16:35						
рН	7.66	1.00	pH Units	1	1900508	01/21/19	01/21/19	EPA 9045C	
SB-3-0-1' (19A0904-08) Soil	Sampled: 01/17/19 15:20 Receiv	ed: 01/17/19	16:35						
рН	10.23	1.00	pH Units	1	1900508	01/21/19	01/21/19	EPA 9045C	
SB-3-1-2' (19A0904-09) Soil	Sampled: 01/17/19 15:20 Receiv	ed: 01/17/19	16:35						
рН	8.32	1.00	pH Units	1	1900508	01/21/19	01/21/19	EPA 9045C	
SB-3-2-3' (19A0904-10) Soil	Sampled: 01/17/19 15:20 Receiv	ed: 01/17/19	16:35						
рН	8.15	1.00	pH Units	1	1900508	01/21/19	01/21/19	EPA 9045C	

Page 5 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Analyte	I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-4-0-1' (19A0904-12) Soil	Sampled: 01/17/19 15:30	Receive	d; 01/17/19 1	16:35						
рΗ	8	.13	1.00	pH Units	1	1900508	01/21/19	01/21/19	EPA 9045C	
SB-4-1-2' (19A0904-13) Soil	Sampled: 01/17/19 15:30	Receive	ed: 01/17/19	16:35						
рΗ	7	.54	1.00	pH Units	1	1900508	01/21/19	01/21/19	EPA 9045C	
SB-4-2-3' (19A0904-14) Soil	Sampled: 01/17/19 15:30	Receive	ed: 01/17/19 1	16:35					411	
рΗ	8	.04	1.00	pH Units	1	1900508	01/21/19	01/21/19	EPA 9045C	
SB-5-0-1' (19A0904-16) Soil	Sampled: 01/17/19 12:40	Receive	ed: 01/17/19	16:35						
рΗ	7	.24	1.00	pH Units	1	1900508	01/21/19	01/21/19	EPA 9045C	
SB-5-1-2' (19A0904-17) Soil	Sampled: 01/17/19 12:40	Receive	ed: 01/17/19 1	16:35						
рН	8	.42	1.00	pH Units	1	1900508	01/21/19	01/21/19	EPA 9045C	
SB-5-2-3' (19A0904-18) Soil	Sampled: 01/17/19 12:40	Receive	d: 01/17/19 1	16:35						
рΗ	8	.35	1.00	pH Units	1	1900508	01/21/19	01/21/19	EPA 9045C	
SB-6-0-1' (19A0904-20) Soil	Sampled: 01/17/19 13:00	Receive	ed: 01/17/19 1	16:35						
рΗ	8	.26	1.00	pH Units	1	1900508	01/21/19	01/21/19	EPA 9045C	
SB-6-1-2' (19A0904-21) Soil	Sampled: 01/17/19 13:00	Receive	ed: 01/17/19 1	16:35						
рΗ	9	.47	1.00	pH Units	1	1900508	01/21/19	01/21/19	EPA 9045C	
SB-7-0-1' (19A0904-23) Soil	Sampled: 01/17/19 12:15	Receive	ed: 01/17/19	16:35						
Н	6	.84	1.00	pH Units	1	1900508	01/21/19	01/21/19	EPA 9045C	

Page 6 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-7-1-2' (19A0904-24) Soil	Sampled: 01/17/19 12:15 Recei	ved: 01/17/19	16:35						
рН	8.67	1.00	pH Units	s 1	1900508	01/21/19	01/21/19	EPA 9045C	
SB-7-2-3' (19A0904-25) Soil	Sampled: 01/17/19 12:15 Recei	ved: 01/17/19	16:35						
рН	7.74	1.00	pH Units	s 1	1900508	01/21/19	01/21/19	EPA 9045C	
SB-8-0-1' (19A0904-27) Soil	Sampled: 01/17/19 12:00 Recei	ved: 01/17/19	16:35					412	
Н	6.68	1.00	pH Units	s 1	1900527	01/21/19	01/21/19	EPA 9045C	
SB-8-1-2' (19A0904-28) Soil	Sampled: 01/17/19 12:00 Recei	ved: 01/17/19	16:35						
рН	8.09	1.00	pH Units	s 1	1900527	01/21/19	01/21/19	EPA 9045C	
SB-8-2-3' (19A0904-29) Soil	Sampled: 01/17/19 12:00 Recei	ved: 01/17/19	16:35						
рН	7.56	1.00	pH Units	s 1	1900527	01/21/19	01/21/19	EPA 9045C	
SB-9-0-1' (19A0904-30) Soil	Sampled: 01/17/19 11:55 Receiv	ved: 01/17/19	16:35						
рН	6.22	1.00	pH Units	s 1	1900527	01/21/19	01/21/19	EPA 9045C	
SB-9-1-2' (19A0904-31) Soil	Sampled: 01/17/19 11:55 Receiv	ved: 01/17/19	16:35						
рН	8.69	1.00	pH Units	s 1	1900527	01/21/19	01/21/19	EPA 9045C	
SB-10-0-1' (19A0904-32) Soil	Sampled: 01/17/19 10:17 Rece	eived: 01/17/19	16:35						
рН	7.07	1.00	pH Units	s 1	1900527	01/21/19	01/21/19	EPA 9045C	
SB-10-1-2' (19A0904-33) Soil	Sampled: 01/17/19 10:17 Rece	eived: 01/17/19	16:35					<u> </u>	
Н	6.96	1.00	pH Units	s I	1900527	01/21/19	01/21/19	EPA 9045C	

Page 7 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Analyte	Res	Reporting ult Limit		Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-10-2-3' (19A0904-34) Soil	Sampled: 01/17/19 10:17	Received: 01/17/1	9 16:35						
рН	7.58	1.00	pH Unit	s 1	1900527	01/21/19	01/21/19	EPA 9045C	
SB-11-0-1' (19A0904-36) Soil	Sampled: 01/17/19 10:10 I	Received: 01/17/1	9 16:35						
pΗ	6.59	1.00	pH Unit	s 1	1900527	01/21/19	01/21/19	EPA 9045C	
SB-11-1-2' (19A0904-37) Soil	Sampled: 01/17/19 10:10 I	Received: 01/17/1	9 16:35						
Н	7.65	1.00	pH Unit	s 1	1900527	01/21/19	01/21/19	EPA 9045C	
SB-11-2-3' (19A0904-38) Soil	Sampled: 01/17/19 10:10 I	Received: 01/17/1	9 16:35						
ЭН	7.73	1.00	pH Unit	s 1	1900527	01/21/19	01/21/19	EPA 9045C	
SB-12-0-1' (19A0904-40) Soil	Sampled: 01/17/19 10:25 1	Received: 01/17/1	9 16:35						
Н	7.47	1.00	pH Unit	s 1	1900527	01/21/19	01/21/19	EPA 9045C	
SB-12-1-2' (19A0904-41) Soil	Sampled: 01/17/19 10:25	Received: 01/17/1	9 16:35						
рΗ	7.36	1.00	pH Unit	s 1	1900527	01/21/19	01/21/19	EPA 9045C	
SB-12-2-3' (19A0904-42) Soil	Sampled: 01/17/19 10:25	Received: 01/17/1	9 16:35						
H	7.29	1.00	pH Unit	s 1	1900527	01/21/19	01/21/19	EPA 9045C	
SB-13-0-1' (19A0904-44) Soil	Sampled: 01/17/19 09:55 1	Received: 01/17/1	9 16:35						
Н	7.31	1.00	pH Unit	s 1	1900527	01/21/19	01/21/19	EPA 9045C	
SB-13-1-2' (19A0904-45) Soil	Sampled: 01/17/19 09:55	Received: 01/17/1	9 16:35						
Н	6.94	1.00	pH Unit	s I	1900527	01/21/19	01/21/19	EPA 9045C	

Page 8 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-14-0-1' (19A0904-47) Soil	Sampled: 01/17/19 09:20 Receiv	ved: 01/17/19	16:35						
рН	6.57	1.00	pH Units	. 1	1900527	01/21/19	01/21/19	EPA 9045C	
SB-14-1-2' (19A0904-48) Soil	Sampled: 01/17/19 09:20 Receiv	ved: 01/17/19	16:35						
pН	6.57	1.00	pH Units	1	1900527	01/21/19	01/21/19	EPA 9045C	
SB-14-2-3' (19A0904-49) Soil	Sampled: 01/17/19 09:20 Receiv	ved: 01/17/19	16:35						
рН	7.32	1.00	pH Units	1	1900527	01/21/19	01/21/19	EPA 9045C	
SB-15-0-1' (19A0904-51) Soil	Sampled: 01/17/19 09:00 Receiv	ved: 01/17/19	16:35						
рН	7.76	1.00	pH Units	1	1900527	01/21/19	01/21/19	EPA 9045C	
SB-15-1-2' (19A0904-52) Soil	Sampled: 01/17/19 09:00 Receiv	ved: 01/17/19	16:35						
рН	7.55	1.00	pH Units	1	1900527	01/21/19	01/21/19	EPA 9045C	
SB-15-2-3' (19A0904-53) Soil	Sampled: 01/17/19 09:00 Receiv	ved: 01/17/19	16:35						
рН	7.79	1.00	pH Units	1	1900527	01/21/19	01/21/19	EPA 9045C	

Page 9 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Extractable Petroleum Hydrocarbons by EPA Method 8015M

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-5 (Composite) (19A0904-19) Soil	Sampled: 01/17/19 12:40	Received: 0	1/17/19 1	6:35					
Diesel	ND	1.0	mg/kg	1	1900515	01/21/19	01/21/19	EPA 8015M	
Surrogate: o-Terphenyl		80 %	65	-135				"	
SB-6 (Composite) (19A0904-22) Soil	Sampled: 01/17/19 13:00	Received: 0	1/17/19 1	6:35					ТРН-Х
Diesel	5,5	1.0	mg/kg	1	1900515	01/21/19	01/21/19	EPA 8015M	
Surrogate: o-Terphenyl		80 %	65	-135	,		"	,	
SB-12 (Composite) (19A0904-43) Soil	Sampled: 01/17/19 10:25	Received:	01/17/19	16:35					QRL-8
Diesel	ND	5.0	mg/kg	.5	1900515	01/21/19	01/21/19	EPA 8015M	
Surrogate: o-Terphenyl		101 %	65	-135			"	(#C)	
SB-15 (Composite) (19A0904-54) Soil	Sampled: 01/17/19 09:00	Received:	01/17/19	16:35					ТРН-Х
Diesel	4.7	1.0	mg/kg	1	1900515	01/21/19	01/21/19	EPA 8015M	
Surrogate: o-Terphenyl		79 %	65	-135	"		,	*	

Page 10 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

Walnut Creek, CA 94596

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Project Manager: Melissa McAssey COC #:

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1-0-1' (19A0904-01) Soil	Sampled: 01/17/19 15:15	Receiv	ed: 01/17/19 1	6:35						
Lead		3.7	2.5	mg/kg	1	1900458	01/18/19	01/21/19	EPA 6010B	
SB-1-1-2' (19A0904-02) Soil	Sampled: 01/17/19 15:15	Receiv	ed: 01/17/19 1	6:35						
Lead		4.8	2.5	mg/kg	1	1900458	01/18/19	01/21/19	EPA 6010B	
SB-1-2-3' (19A0904-03) Soil	Sampled: 01/17/19 15:15	Receiv	ed: 01/17/19 1	6:35						
Lead		4.5	2.5	mg/kg	1	1900458	01/18/19	01/21/19	EPA 6010B	
SB-2-0-1' (19A0904-05) Soil	Sampled: 01/17/19 15:00	Receiv	ed: 01/17/19 1	16:35						
Lead		7.9	2.5	mg/kg	1	1900458	01/18/19	01/21/19	EPA 6010B	
SB-2-1-2' (19A0904-06) Soil	Sampled: 01/17/19 15:00	Receiv	ed: 01/17/19 1	6:35						
Lead		3.2	2.5	mg/kg	1	1900458	01/18/19	01/21/19	EPA 6010B	
SB-2-2-3' (19A0904-07) Soil	Sampled: 01/17/19 15:00	Receiv	ed: 01/17/19 1	6:35						
Lead		4.8	2.5	mg/kg	1	1900458	01/18/19	01/21/19	EPA 6010B	
SB-3-0-1' (19A0904-08) Soil	Sampled: 01/17/19 15:20	Receiv	ed: 01/17/19 1	16:35						
Lead		30	2.5	mg/kg	1	1900458	01/18/19	01/21/19	EPA 6010B	
SB-3-1-2' (19A0904-09) Soil	Sampled: 01/17/19 15:20	Receiv	ed: 01/17/19 1	6:35						
Lead		4.2	2.5	mg/kg	1	1900458	01/18/19	01/21/19	EPA 6010B	
SB-3-2-3' (19A0904-10) Soil	Sampled: 01/17/19 15:20	Receiv	ed: 01/17/19 1	6:35						
Lead		3.9	2.5	mg/kg	1	1900458	01/18/19	01/21/19	EPA 6010B	

Page 11 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-4-0-1' (19A0904-12) Soil	Sampled: 01/17/19 15:30	Receiv	ed: 01/17/19 1	16:35						
Lead	V - 4 - 5	79	2.5	mg/kg	1	1900458	01/18/19	01/21/19	EPA 6010B	
SB-4-1-2' (19A0904-13) Soil	Sampled: 01/17/19 15:30	Receiv	ed: 01/17/19 1	16:35						
Lead		5.9	2.5	mg/kg	1	1900458	01/18/19	01/21/19	EPA 6010B	
SB-4-2-3' (19A0904-14) Soil	Sampled: 01/17/19 15:30	Receiv	ed: 01/17/19 1	16:35					40.00	
Lead		4.2	2.5	mg/kg	D	1900459	01/18/19	01/21/19	EPA 6010B	
SB-5-0-1' (19A0904-16) Soil	Sampled: 01/17/19 12:40	Receiv	ed: 01/17/19 1	16:35						
Lead		73	2.5	mg/kg	Ţ	1900459	01/18/19	01/21/19	EPA 6010B	
SB-5-1-2' (19A0904-17) Soil	Sampled: 01/17/19 12:40	Receiv	ed: 01/17/19 1	16:35						
Lead		72	2.5	mg/kg	1	1900459	01/18/19	01/21/19	EPA 6010B	
SB-5-2-3' (19A0904-18) Soil	Sampled: 01/17/19 12:40	Receiv	ed: 01/17/19 1	16:35						
Lead		100	2.5	mg/kg	1	1900459	01/18/19	01/21/19	EPA 6010B	
SB-6-0-1' (19A0904-20) Soil	Sampled: 01/17/19 13:00	Receiv	ed: 01/17/19 1	16:35						
Lead		250	2.5	mg/kg	1	1900459	01/18/19	01/21/19	EPA 6010B	
SB-6-1-2' (19A0904-21) Soil	Sampled: 01/17/19 13:00	Receiv	ed: 01/17/19 1	16:35						
Lead		470	2.5	mg/kg	1	1900459	01/18/19	01/21/19	EPA 6010B	
SB-7-0-1' (19A0904-23) Soil	Sampled: 01/17/19 12:15	Receiv	ed: 01/17/19 1	16:35						
Lead		130	2.5	mg/kg	1	1900459	01/18/19	01/21/19	EPA 6010B	

Page 12 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-7-1-2' (19A0904-24) Soil	Sampled: 01/17/19 12:15	Receiv	ed: 01/17/19 1	6:35						
Lead		250	2.5	mg/kg	1	1900459	01/18/19	01/21/19	EPA 6010B	
SB-7-2-3' (19A0904-25) Soil	Sampled: 01/17/19 12:15	Receiv	ed: 01/17/19 1	6:35						
Lead		5.7	2.5	mg/kg	1	1900459	01/18/19	01/21/19	EPA 6010B	
SB-8-0-1' (19A0904-27) Soil	Sampled: 01/17/19 12:00	Receiv	ed: 01/17/19 1	6:35						
Lead		ND	2.5	mg/kg	1	1900459	01/18/19	01/21/19	EPA 6010B	
SB-8-1-2' (19A0904-28) Soil	Sampled: 01/17/19 12:00	Receiv	ed: 01/17/19 1	6:35						
Lead		ND	2.5	mg/kg	1	1900459	01/18/19	01/21/19	EPA 6010B	
SB-8-2-3' (19A0904-29) Soil	Sampled: 01/17/19 12:00	Receiv	ed: 01/17/19 1	6:35						
Lead		4.6	2.5	mg/kg	1	1900459	01/18/19	01/21/19	EPA 6010B	
SB-9-0-1' (19A0904-30) Soil	Sampled: 01/17/19 11:55	Receive	ed: 01/17/19 1	6:35						
Lead		2.8	2.5	mg/kg	1	1900459	01/18/19	01/21/19	EPA 6010B	
SB-9-1-2' (19A0904-31) Soil	Sampled: 01/17/19 11:55	Receive	ed: 01/17/19 1	6:35						
Lead		12	2.5	mg/kg	1	1900459	01/18/19	01/21/19	EPA 6010B	
SB-10-0-1' (19A0904-32) Soil	Sampled: 01/17/19 10:1	7 Recei	ved: 01/17/19	16:35						
Lead		8.6	2.5	mg/kg	1	1900459	01/18/19	01/21/19	EPA 6010B	
SB-10-1-2' (19A0904-33) Soil	Sampled: 01/17/19 10:1	Recei	ved: 01/17/19	16:35						
Lead		19	2.5	mg/kg	T	1900459	01/18/19	01/21/19	EPA 6010B	

Page 13 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

Walnut Creek, CA 94596

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Project Manager: Melissa McAssey COC #:

Analyte	R	esult	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-10-2-3' (19A0904-34) Soil	Sampled: 01/17/19 10:17	Receiv	ved: 01/17/19	16:35						
Lead		44	2.5	mg/kg	1	1900459	01/18/19	01/21/19	EPA 6010B	
SB-11-0-1' (19A0904-36) Soil	Sampled: 01/17/19 10:10	Receiv	ved: 01/17/19	16:35						
Lead		65	2.5	mg/kg	1	1900459	01/18/19	01/21/19	EPA 6010B	
SB-11-1-2' (19A0904-37) Soil	Sampled: 01/17/19 10:10	Receiv	ved: 01/17/19	16:35						
Lead	9	0.6	2.5	mg/kg	1	1900459	01/18/19	01/21/19	EPA 6010B	
SB-11-2-3' (19A0904-38) Soil	Sampled: 01/17/19 10:10	Receiv	ved: 01/17/19	16:35						
Lead	N	ID	2.5	mg/kg	1	1900459	01/18/19	01/21/19	EPA 6010B	
SB-12-0-1' (19A0904-40) Soil	Sampled: 01/17/19 10:25	Receiv	ved: 01/17/19	16:35						
Lead		36	2.5	mg/kg	1	1900498	01/21/19	01/24/19	EPA 6010B	
SB-12-1-2' (19A0904-41) Soil	Sampled: 01/17/19 10:25	Receiv	ved: 01/17/19	16:35						
Lead		17	2.5	mg/kg	1	1900498	01/21/19	01/24/19	EPA 6010B	
SB-12-2-3' (19A0904-42) Soil	Sampled: 01/17/19 10:25	Receiv	ved: 01/17/19	16:35						
Lead	6	5.8	2.5	mg/kg	1	1900498	01/21/19	01/24/19	EPA 6010B	
SB-13-0-1' (19A0904-44) Soil	Sampled: 01/17/19 09:55	Receiv	ved: 01/17/19	16:35						
Lead		31	2.5	mg/kg	1	1900498	01/21/19	01/24/19	EPA 6010B	
SB-13-1-2' (19A0904-45) Soil	Sampled: 01/17/19 09:55	Receiv	ved: 01/17/19	16:35						
Lead		29	2.5	mg/kg	1	1900498	01/21/19	01/24/19	EPA 6010B	

Page 14 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Analyte	R	esult	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-14-0-1' (19A0904-47) Soil	Sampled: 01/17/19 09:20	Receiv	ed: 01/17/19	16:35						
Lead		35	2.5	mg/kg	1	1900498	01/21/19	01/24/19	EPA 6010B	
SB-14-1-2' (19A0904-48) Soil	Sampled: 01/17/19 09:20	Receiv	ed: 01/17/19	16:35						
Lead		53	2.5	mg/kg	1	1900498	01/21/19	01/24/19	EPA 6010B	
SB-14-2-3' (19A0904-49) Soil	Sampled: 01/17/19 09:20	Receiv	ed: 01/17/19	16:35				4.54		
Lead		14	2.5	mg/kg	1	1900498	01/21/19	01/24/19	EPA 6010B	
SB-15-0-1' (19A0904-51) Soil	Sampled: 01/17/19 09:00	Receiv	ed: 01/17/19	16:35						
Lead		45	2.5	mg/kg	T	1900498	01/21/19	01/24/19	EPA 6010B	
SB-15-1-2' (19A0904-52) Soil	Sampled: 01/17/19 09:00	Receiv	ed: 01/17/19	16:35						
Lead	6	6.8	2.5	mg/kg	1	1900498	01/21/19	01/24/19	EPA 6010B	
SB-15-2-3' (19A0904-53) Soil	Sampled: 01/17/19 09:00	Receiv	/ed: 01/17/19	16:35						
Lead	7	1.7	2.5	mg/kg	1	1900498	01/21/19	01/24/19	EPA 6010B	

Page 15 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Organochlorine Pesticides by EPA Method 8081A

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1 (Composite) (19A0904-04) Soil	Sampled: 01/17/19 15:15	Received: 0	1/17/19 1	6:35					
4,4'-DDD	ND	3.3	μg/kg	1	1900504	01/21/19	01/22/19	EPA 8081A	
4,4'-DDE	ND	3.3	"	0		u			
4,4'-DDT	ND	3.3	**	n		0			
Aldrin	ND	1.0			100	6			
alpha-BHC	ND	1.7		-60	10	n	96	**	
beta-BHC	ND	1.7	**	n	"	0			
Chlordane-technical	ND	3.3				6	w		
delta-BHC	ND	1.7	**	0			m.	**	
Dieldrin	ND	1.0	"						
Endosulfan I	ND	1.7				0	w	- 10	
Endosulfan II	ND	3.3		0			m.	*	
Endosulfan sulfate	ND	3.3	- "	6	10		n .		
Endrin	ND	3.3	W	n			in .		
Endrin aldehyde	ND	3.3		v.					
gamma-BHC (Lindane)	ND	1.7		0					
Heptachlor	ND	1.7	ii.	n					
Heptachlor epoxide	ND	1.7		o.			w.		
Methoxychlor	ND	17	*	0		6	100	***	
Mirex	ND	3.3	ü	n					
Toxaphene	ND	20		w	"	0	· ·		
Surrogate: Decachlorobiphenyl		67 %	52	-141					
				-141 -139	"		"	,,	
Surrogate: Tetrachloro-meta-xylene		61 %	40	-139	-				

Page 16 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Polychlorinated Biphenyls by EPA Method 8082A

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-5 (Composite) (19A0904-19) Soil	Sampled: 01/17/19 12:40	Received: 0	1/17/19 1	6:35					
Aroclor 1016	ND	20	μg/kg	1	1900505	01/21/19	01/22/19	EPA 8082A	
Aroclor 1221	ND	20	"	0					
Aroclor 1232	ND	20	**	n		•		•	
Aroclor 1242	ND	20		· ·	11.00	6		"	
Aroclor 1248	ND	20		60	146	n		·#·	
Aroclor 1254	ND	20	**			0			
Aroclor 1260	ND	20				6		70	
Aroclor 1268	ND	20		0	11	n	11	ir.	

Page 17 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Polynuclear Aromatic Compounds by EPA Method 8270C

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-1 (Composite) (19A0904-04) Soil	Sampled: 01/17/19 15:15	Received: 0	1/17/19 1	6:35					
2-Methylnaphthalene	ND	330	μg/kg	1	1900433	01/18/19	01/21/19	EPA 8270C	
Acenaphthene	ND	330	**	6		w			
Acenaphthylene	ND	330	**	n			"	• • •	
Anthracene	ND	330		· · ·	100	6			
Benzo (a) anthracene	ND	330	**	6	**	n	*		
Benzo (a) pyrene	ND	330	**	n	**	0			
Benzo (b) fluoranthene	ND	330				6			
Benzo (g,h,i) perylene	ND	330		0		n	90		
Benzo (k) fluoranthene	ND	330	**			· ·			
Chrysene	ND	330				0			
Dibenz (a,h) anthracene	ND	330		6		0	10		
Dibenzofuran	ND	330	- 10	6	100		n .		
Fluoranthene	ND	330				0		•	
Fluorene	ND	330							
Indeno (1,2,3-cd) pyrene	ND	330	**	0					
Naphthalene	ND	330				0			
Phenanthrene	ND	330					***	w.	
Pyrene	ND	330	10			•	41	19	
Surrogate: 2-Fluorobiphenyl		72 %	30)-115	"	0	"		
Surrogate: Nitrobenzene-d5		77 %	23	-120		6	"		
Surrogate: Terphenyl-dl4		60 %	18	2-137	"			"	
SB-5 (Composite) (19A0904-19) Soil	Sampled: 01/17/19 12:40	Received: 0	1/17/19 1	6:35					
2-Methylnaphthalene	ND	330	μg/kg	1	1900433	01/18/19	01/21/19	EPA 8270C	
Acenaphthene	ND	330	"			0	**	***	
Acenaphthylene	ND	330	"					•	
Anthracene	ND	330		0.					
Benzo (a) anthracene	ND	330		0			in .		
Benzo (a) pyrene	ND	330	**			6	11		
Benzo (b) fluoranthene	ND	330		w					

Page 18 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Polynuclear Aromatic Compounds by EPA Method 8270C

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-5 (Composite) (19A0904-19) Soil	Sampled: 01/17/19 12:40	Received: 0	1/17/19 1	6:35					
Benzo (g,h,i) perylene	ND	330	μg/kg	1	1900433	6	01/21/19	EPA 8270C	
Benzo (k) fluoranthene	ND	330	"	6		w	*		
Chrysene	ND	330	**					•	
Dibenz (a,h) anthracene	ND	330			100	6		Ψ.	
Dibenzofuran	ND	330	**	6	10			**	
Fluoranthene	ND	330	11					• • •	
Fluorene	ND	330			(n)	6		· W	
Indeno (1,2,3-cd) pyrene	ND	330	**	0	111		-11	10	
Naphthalene	ND	330	**			O.			
Phenanthrene	ND	330			11.0	0		· W	
Pyrene	ND	330	и	0	11	•			
Surrogate: 2-Fluorobiphenyl		67 %	30)-115			,		
Surrogate: Nitrobenzene-d5		79 %	23	-120	**		"		
Surrogate: Terphenyl-dl4		62 %	18	-137	"		**	"	

Page 19 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

TPH-Gasoline by GC FID

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-3 (Composite) (19A0904-11) Soil	Sampled: 01/17/19 15:20	Received: 0	1/17/19 16	:35					
Gasoline	ND	1.0	mg/kg	1	1900604	01/22/19	01/22/19	EPA 8015M	
Surrogate: o-Chlorotoluene (Gas)		83 %	65-	135	,	v	"		
SB-4 (Composite) (19A0904-15) Soil	Sampled: 01/17/19 15:30	Received: 0	1/17/19 16	:35					
Gasoline	ND	1.0	mg/kg	ı	1900604	01/22/19	01/22/19	EPA 8015M	
Surrogate: o-Chlorotoluene (Gas)		107 %	65-	135	,	v			
SB-5 (Composite) (19A0904-19) Soil	Sampled: 01/17/19 12:40	Received: 0	1/17/19 16	:35					
Gasoline	ND	1.0	mg/kg	1	1900604	01/22/19	01/22/19	EPA 8015M	
Surrogate: o-Chlorotoluene (Gas)		72 %	65-	135	n		"		
SB-6 (Composite) (19A0904-22) Soil	Sampled: 01/17/19 13:00	Received: 0	1/17/19 16	:35					
Gasoline	ND	1.0	mg/kg	ı	1900604	01/22/19	01/22/19	EPA 8015M	
Surrogate: o-Chlorotoluene (Gas)		66 %	65-	135	n		"		
SB-10 (Composite) (19A0904-35) Soil	Sampled: 01/17/19 10:17	Received:	01/17/19 1	6:35					
Gasoline	ND	1.0	mg/kg	1	1900604	01/22/19	01/22/19	EPA 8015M	
Surrogate: o-Chlorotoluene (Gas)		84 %	65-	135	,	•	"		
SB-11 (Composite) (19A0904-39) Soil	Sampled: 01/17/19 10:17	Received:	01/17/19 1	6:35					
Gasoline	ND	1.0	mg/kg	1	1900604	01/22/19	01/22/19	EPA 8015M	
Surrogate: o-Chlorotoluene (Gas)		76 %	65-	135	"	•	"		
SB-12 (Composite) (19A0904-43) Soil	Sampled: 01/17/19 10:25	Received:	01/17/19 1	6:35					
Gasoline	ND	1.0	mg/kg	-1	1900604	01/22/19	01/22/19	EPA 8015M	

Page 20 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

Walnut Creek, CA 94596

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Project Manager: Melissa McAssey COC #:

TPH-Gasoline by GC FID

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-12 (Composite) (19A0904-43) Soil	Sampled: 01/17/19 10:25	Received:	01/17/19	16:35					
Surrogate: o-Chlorotoluene (Gas)		72 %	65	-135	1900604	6	01/22/19	EPA 8015M	
SB-15 (Composite) (19A0904-54) Soil	Sampled: 01/17/19 09:00	Received:	01/17/19	16:35					
Gasoline	ND	1.0	mg/kg	1	1900604	01/22/19	01/22/19	EPA 8015M	
Surrogate: o-Chlorotoluene (Gas)		81 %	65	i-135	,	6	,		

Page 21 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-3 (Composite) (19A0904-11) Soil	Sampled: 01/17/19 15:20	Received: 01	/17/19 1	6:35					
Benzene	ND	5.0	μg/kg	1	1900522	01/21/19	01/21/19	EPA 8260B	
Ethylbenzene	ND	5.0	"	0					
Toluene	ND	5.0	W		**	0			
Xylenes (total)	ND	10	, m	ų	m.	6	*	n ,	
Surrogate: Toluene-d8		96 %	60)-140	"	•	,	*	
SB-4 (Composite) (19A0904-15) Soil	Sampled: 01/17/19 15:30	Received: 01	1/17/19 1	6:35					
Benzene	ND	5.0	μg/kg	1	1900522	01/21/19	01/21/19	EPA 8260B	
Ethylbenzene	ND	5.0	"	6					
Toluene	ND	5.0	ii	n	**	0			
Xylenes (total)	ND	10		0				W.	
Surrogate: Toluene-d8		93 %	60)-140	,		,,		
0			-						
SB-6 (Composite) (19A0904-22) Soil	Sampled: 01/17/19 13:00								
	Sampled: 01/17/19 13:00 ND			6:35	1900522	01/21/19	01/21/19	EPA 8260B	
SB-6 (Composite) (19A0904-22) Soil		Received: 01	1/17/19 1	6:35	1900522	01/21/19	01/21/19	EPA 8260B	
SB-6 (Composite) (19A0904-22) Soil	ND	Received: 01	1/ 17/19 1 μg/kg	6:35					
SB-6 (Composite) (19A0904-22) Soil 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	ND ND	5.0 5.0	1/17/19 1 μg/kg "	6:35	11		10.	ir.	
SB-6 (Composite) (19A0904-22) Soil 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND ND ND ND	5.0 5.0 5.0 5.0 5.0	1/17/19 1 μg/kg "	6:35	"				
SB-6 (Composite) (19A0904-22) Soil 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane	ND ND ND ND	5.0 5.0 5.0 5.0 5.0	1/17/19 1 μg/kg "	6:35	" "				
SB-6 (Composite) (19A0904-22) Soil 1,1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane	ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0	μg/kg " "	6:35					
SB-6 (Composite) (19A0904-22) Soil 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	ND ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0 5.0	1/17/19 1 μg/kg "	6:35					
SB-6 (Composite) (19A0904-22) Soil 1,1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloroethene 1,1-Dichloropropene	ND	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1/17/19 1 μg/kg "	6:35	, , , , , , , , , , , , , , , , , , ,				
SB-6 (Composite) (19A0904-22) Soil 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene	ND	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1/17/19 1 µg/kg " " "	6:35					
SB-6 (Composite) (19A0904-22) Soil 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	ND N	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	I/17/19 1 µg/kg " " " " " "	6:35					
SB-6 (Composite) (19A0904-22) Soil 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	ND N	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	I/17/19 1 µg/kg " " " " " " "	6:35					
SB-6 (Composite) (19A0904-22) Soil 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	ND N	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	I/17/19 1 µg/kg " " " " " " " " "	6:35		n n n			
SB-6 (Composite) (19A0904-22) Soil 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	ND N	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1/17/19 1 μg/kg " " " " " " " "	6:35					

Page 22 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-6 (Composite) (19A0904-22) Soil	Sampled: 01/17/19 13:00	Received: 0	1/17/19 1	6:35					
1,2-Dichloroethane	ND	5.0	μg/kg	1	1900522	6	01/21/19	EPA 8260B	
1,2-Dichloropropane	ND	5.0	"	6		w			
1,3,5-Trimethylbenzene	ND	5.0	**						
1,3-Dichlorobenzene	ND	5.0		0	W.			w	
1,3-Dichloropropane	ND	5.0		0	10			**	
1,4-Dichlorobenzene	ND	5.0	**	n	**			• •	
2,2-Dichloropropane	ND	5.0		0				· w	
2-Butanone	ND	100		0			11		
2-Hexanone	ND	50	"						
4-Methyl-2-pentanone	ND	50		· ·				· W	
Acetone	ND	100	**	0					
Benzene	ND	5.0	· ·	. 6	100		n .		
Bromobenzene	ND	5.0						"	
Bromochloromethane	ND	5.0						"	
Bromodichloromethane	ND	5.0	**		"		"	"	
Bromoform	ND	5.0	· ·					"	
Bromomethane	ND	10						"	
Carbon tetrachloride	ND	5.0						•	
Chlorobenzene	ND	5.0						"	
Chloroethane	ND	5.0						•	
Chloroform	ND	5.0						"	
Chloromethane	ND	10		"		"	"	•	
cis-1,2-Dichloroethene	ND	5.0	**	"		"	"	•	
eis-1,3-Dichloropropene	ND	5.0	"	"		"	"	•	
Dibromochloromethane	ND	5.0		"		"	"	"	
Dibromomethane	ND	5.0		"		"	"	•	
Dichlorodifluoromethane (Freon 12)	ND	10		"		"	"		
Di-isopropyl ether	ND	5.0	u	n					
Ethyl tert-butyl ether	ND	5.0				in .	"		
Ethylbenzene	ND	5.0		0			**	•	
Hexachlorobutadiene	ND	5.0	"	6				n n	

Page 23 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-6 (Composite) (19A0904-22) Soil	Sampled: 01/17/19 13:00	Received: 0	1/17/19 1	6:35					
Isopropylbenzene	ND	5.0	μg/kg	1	1900522	6	01/21/19	EPA 8260B	
Methyl tert-butyl ether	ND	5.0	"			v	*		
Methylene chloride	ND	20	**					• •	
Naphthalene	ND	5.0			(m)	6		W	
n-Butylbenzene	ND	5.0		0	10	n	10		
n-Propylbenzene	ND	5.0	**					***	
o-Chlorotoluene	ND	5.0				6		70	
p-Chlorotoluene	ND	5.0		0			10		
p-Isopropyltoluene	ND	5.0					- 40		
sec-Butylbenzene	ND	5.0				0		· W .	
Styrene	ND	5.0		0			10		
tert-Amyl methyl ether	ND	5.0	**	0	110		-11	16	
tert-Butyl alcohol	ND	50		n					
tert-Butylbenzene	ND	5.0	n			n	**	w	
Tetrachloroethene	ND	5.0		0		n.			
Toluene	ND	5.0	**						
trans-1,2-Dichloroethene	ND	5.0	- 10	v				w	
trans-1,3-Dichloropropene	ND	5.0	**	0		0.0		**	
Trichloroethene	ND	5.0		n					
Trichlorofluoromethane	ND	5.0	- 19	u.	**	0		w	
Vinyl chloride	ND	10		0			и	**	
Xylenes (total)	ND	10	,						
Surrogate: 1,2-Dichloroethane-d4		70 %	50	-125			"		
Surrogate: 4-Bromofluorobenzene		112 %	50	-128	n		"	*	
Surrogate: Toluene-d8		98 %	62	-125	"		"	**	

Page 24 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-7 (Composite) (19A0904-26) Soil	Sampled: 01/17/19 12:15	Received: 0	1/17/19 1	6:35					
1,1,1,2-Tetrachloroethane	ND	5.0	μg/kg	1	1900522	01/21/19	01/21/19	EPA 8260B	
1,1,1-Trichloroethane	ND	5.0		6					
1,1,2,2-Tetrachloroethane	ND	5.0				•		- 16	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	5.0				•			
1,1,2-Trichloroethane	ND	5.0				•			
1,1-Dichloroethane	ND	5.0		0			100	-10	
1,1-Dichloroethene	ND	5.0				w		- 10	
1,1-Dichloropropene	ND	5.0					**		
1,2,3-Trichlorobenzene	ND	5.0	"	0	**	On I	*	**	
1,2,3-Trichloropropane	ND	5.0						70	
1,2,4-Trichlorobenzene	ND	5.0			100				
,2,4-Trimethylbenzene	ND	5.0	"			"	"	•	
,2-Dibromo-3-chloropropane	ND	10	**			"	"	•	
1,2-Dibromoethane (EDB)	ND	5.0	**			"	"		
1,2-Dichlorobenzene	ND	5.0				"	"	"	
,2-Dichloroethane	ND	5.0				"	"	•	
,2-Dichloropropane	ND	5.0	**			"	"		
,3,5-Trimethylbenzene	ND	5.0				"	"		
,3-Dichlorobenzene	ND	5.0				"	"		
,3-Dichloropropane	ND	5.0	**			"	"		
,4-Dichlorobenzene	ND	5.0				"	"		
2,2-Dichloropropane	ND	5.0				"	"		
2-Butanone	ND	100	**			"	"		
2-Hexanone	ND	50		"		"	"		
-Methyl-2-pentanone	ND	50		"		"	"		
Acetone	ND	100	"	"		"			
Benzene	ND	5.0							
Bromobenzene	ND	5.0		6				**	
Bromochloromethane	ND	5.0	**	n		- ·			
Bromodichloromethane	ND	5.0			11.	6		Ψ.	

Page 25 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-7 (Composite) (19A0904-26) Soil	Sampled: 01/17/19 12:15	Received: 0	1/17/19 1	6:35					
Bromoform	ND	5.0	μg/kg	1	1900522		01/21/19	EPA 8260B	
Bromomethane	ND	10	"	0					
Carbon tetrachloride	ND	5.0	**	n		•		•	
Chlorobenzene	ND	5.0			100		9	W	
Chloroethane	ND	5.0		0	11			**	
Chloroform	ND	5.0	**	n	"	0		• •	
Chloromethane	ND	10				6			
cis-1,2-Dichloroethene	ND	5.0		6			m.		
cis-1,3-Dichloropropene	ND	5.0			46			**	
Dibromochloromethane	ND	5.0							
Dibromomethane	ND	5.0		6					
Dichlorodifluoromethane (Freon 12)	ND	10		6	10		n .	16	
Di-isopropyl ether	ND	5.0	· ·		"				
Ethyl tert-butyl ether	ND	5.0			"			•	
Ethylbenzene	ND	5.0			"		"		
Hexachlorobutadiene	ND	5.0			"			•	
Isopropylbenzene	ND	5.0			"				
Methyl tert-butyl ether	ND	5.0	**		"			•	
Methylene chloride	ND	20			"		"		
Naphthalene	ND	5.0			"		"	•	
n-Butylbenzene	ND	5.0			"				
n-Propylbenzene	ND	5.0			"			•	
o-Chlorotoluene	ND	5.0	**		"			•	
p-Chlorotoluene	ND	5.0	**		"		"	•	
p-Isopropyltoluene	ND	5.0			"			•	
sec-Butylbenzene	ND	5.0	**		"		"		
Styrene	ND	5.0			"		"		
tert-Amyl methyl ether	ND	5.0	и	n					
tert-Butyl alcohol	ND	50			'n	n n		w.	
tert-Butylbenzene	ND	5.0		0	11		·		
Tetrachloroethene	ND	5.0	**	6					

Page 26 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-7 (Composite) (19A0904-26) Soil	Sampled: 01/17/19 12:15	Received: 0	1/17/19 1	6:35					
Toluene	ND	5.0	μg/kg	1	1900522	6	01/21/19	EPA 8260B	
trans-1,2-Dichloroethene	ND	5.0	"	6		w			
trans-1,3-Dichloropropene	ND	5.0		n				•	
Trichloroethene	ND	5.0		u.	100	6		"	
Trichlorofluoromethane	ND	5.0	**	-60	**		#	**	
Vinyl chloride	ND	10	"					• • •	
Xylenes (total)	ND	10		ų	n	6		W. 1	
Surrogate: 1,2-Dichloroethane-d4		81 %	50	-125	,,		,	,,	
Surrogate: 4-Bromofluorobenzene		140 %	50	-128	n	0	**		QS-
Surrogate: Toluene-d8		95 %	62	-125	"	•	**	"	
SB-10 (Composite) (19A0904-35) Soil	Sampled: 01/17/19 10:17	Received:	01/17/19	16:35					
Benzene	ND	5.0	μg/kg	1	1900522	01/21/19	01/21/19	EPA 8260B	
Ethylbenzene	ND	5.0							
Toluene	ND	5.0		6	1.0		- 11		
Xylenes (total)	ND	10	- 10			•	- 1		
Surrogate: Toluene-d8		88 %	60	-140	"		"		
SB-11 (Composite) (19A0904-39) Soil	Sampled: 01/17/19 10:17	Received:	01/17/19	16:35					
Benzene	ND	5.0	μg/kg	1	1900522	01/21/19	01/21/19	EPA 8260B	
Ethylbenzene	ND	5.0	,n	· ·	100	.00		· w	
Toluene	ND	5.0	,,	0			10		
Xylenes (total)	ND	10	- 4		-	· ·			
Surrogate: Toluene-d8		92 %	60	-140	"			,,	

Page 27 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-12 (Composite) (19A0904-43) Soil	Sampled: 01/17/19 10:25	Received:	01/17/19	16:35					
1,1,1,2-Tetrachloroethane	ND	5.0	μg/kg	1	1900522	01/21/19	01/21/19	EPA 8260B	
1,1,1-Trichloroethane	ND	5.0	"	6					
1,1,2,2-Tetrachloroethane	ND	5.0		n		0		- 10	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	5.0							
1,1,2-Trichloroethane	ND	5.0			M		10		
1,1-Dichloroethane	ND	5.0	"	0	"	0	11		
1,1-Dichloroethene	ND	5.0	u	n		w			
1,1-Dichloropropene	ND	5.0		"	"		w		
1,2,3-Trichlorobenzene	ND	5.0		0		n ·	**		
1,2,3-Trichloropropane	ND	5.0		6	**				
1,2,4-Trichlorobenzene	ND	5.0		v	**				
1,2,4-Trimethylbenzene	ND	5.0		"	"	"		"	
1,2-Dibromo-3-chloropropane	ND	10		"	"	"		"	
1,2-Dibromoethane (EDB)	ND	5.0		"	"	"		"	
1,2-Dichlorobenzene	ND	5.0		"	"	"		"	
1,2-Dichloroethane	ND	5.0		"	"	"		"	
1,2-Dichloropropane	ND	5.0	**	"	"	"		"	
1,3,5-Trimethylbenzene	ND	5.0			"	"			
1,3-Dichlorobenzene	ND	5.0		"	"	"		"	
1,3-Dichloropropane	ND	5.0	**	"	"	"		"	
1,4-Dichlorobenzene	ND	5.0		"	"	"		"	
2,2-Dichloropropane	ND	5.0	**		"	"		*	
2-Butanone	ND	100	**		"			"	
2-Hexanone	ND	50		"	"	"		"	
4-Methyl-2-pentanone	ND	50		"	"			"	
Acetone	ND	100			"			*	
Benzene	ND	5.0					n		
Bromobenzene	ND	5.0		0			n.	**	
Bromochloromethane	ND	5.0	н	n	"				
Bromodichloromethane	ND	5.0		· ·		6		•	

Page 28 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-12 (Composite) (19A0904-43) Soil	Sampled: 01/17/19 10:25	Received:	01/17/19	16:35					
Bromoform	ND	5.0	μg/kg	1	1900522	6	01/21/19	EPA 8260B	
Bromomethane	ND	10	"	6					
Carbon tetrachloride	ND	5.0	**	n			"		
Chlorobenzene	ND	5.0			100			w	
Chloroethane	ND	5.0		6	10			**	
Chloroform	ND	5.0	**	•	"	· ·		• •	
Chloromethane	ND	10			11.0			· w	
cis-1,2-Dichloroethene	ND	5.0	,,,	0					
cis-1,3-Dichloropropene	ND	5.0				· ·			
Dibromochloromethane	ND	5.0		u ·	10.00			· W .	
Dibromomethane	ND	5.0		0					
Dichlorodifluoromethane (Freon 12)	ND	10	**				n .	10	
Di-isopropyl ether	ND	5.0	· ·					"	
Ethyl tert-butyl ether	ND	5.0		"		"	"	"	
Ethylbenzene	ND	5.0	**	"		"	"	"	
Hexachlorobutadiene	ND	5.0	**						
Isopropylbenzene	ND	5.0						"	
Methyl tert-butyl ether	ND	5.0	**					"	
Methylene chloride	ND	20	**					"	
Naphthalene	ND	5.0						"	
n-Butylbenzene	ND	5.0						"	
n-Propylbenzene	ND	5.0				"	"	"	
o-Chlorotoluene	ND	5.0	W			"	"	"	
o-Chlorotoluene	ND	5.0	**			"	"		
o-Isopropyltoluene	ND	5.0	"	"		"	"		
sec-Butylbenzene	ND	5.0	*	"		"	"		
Styrene	ND	5.0				"	"	"	
ert-Amyl methyl ether	ND	5.0	u	n					
tert-Butyl alcohol	ND	50	н		**	n		w	
tert-Butylbenzene	ND	5.0		0			·n	**	
Tetrachloroethene	ND	5.0		6			1.0	•	

Page 29 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-12 (Composite) (19A0904-43) Soil	Sampled: 01/17/19 10:25	Received:	01/17/19	16:35					
Toluene	ND	5.0	μg/kg	1	1900522	6	01/21/19	EPA 8260B	
trans-1,2-Dichloroethene	ND	5.0	"	0		v			
trans-1,3-Dichloropropene	ND	5.0	**						
Trichloroethene	ND	5.0		· ·	11.00	6			
Trichlorofluoromethane	ND	5.0			*	n		**	
Vinyl chloride	ND	10	**			· ·			
Xylenes (total)	ND	10		ų	n	6			
Surrogate: 1,2-Dichloroethane-d4		54 %	50	1-125	"		,,		
Surrogate: 4-Bromofluorobenzene		124 %	50	1-128	n	0	"		
Surrogate: Toluene-d8		91 %	62	2-125	"	•	"		
SB-13 (Composite) (19A0904-46) Soil	Sampled: 01/17/19 09:55	Received:	01/17/19	16:35					
1,1,1,2-Tetrachloroethane	ND	5.0	μg/kg	1	1900522	01/21/19	01/21/19	EPA 8260B	
1,1,1-Trichloroethane	ND	5.0							
1,1,2,2-Tetrachloroethane	ND	5.0					11	**	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	5.0	"						
1,1,2-Trichloroethane	ND	5.0	"	6					
1,1-Dichloroethane	ND	5.0		n	**				
1,1-Dichloroethene	ND	5.0	**	0	**		-11	- 10	
1,1-Dichloropropene	ND	5.0	"	6			196	-	
1,2,3-Trichlorobenzene	ND	5.0	W	n	**				
1,2,3-Trichloropropane	ND	5.0				ň			
1,2,4-Trichlorobenzene	ND	5.0		6		n			
1,2,4-Trimethylbenzene	ND	5.0	u		"				
1,2-Dibromo-3-chloropropane	ND	10							
1,2-Dibromoethane (EDB)	ND	5.0							
1,2-Dichlorobenzene	ND	5.0	*	•					
1,2-Dichloroethane	ND	5.0		0		n.		*	
1,2-Dichloropropane	ND	5.0		6		w			
1,3,5-Trimethylbenzene	ND	5.0	ii.	n					

Page 30 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-13 (Composite) (19A0904-46) Soil	Sampled: 01/17/19 09:55	Received:	01/17/19	16:35					
1,3-Dichlorobenzene	ND	5.0	μg/kg	1	1900522	6	01/21/19	EPA 8260B	
1,3-Dichloropropane	ND	5.0	"	6					
1,4-Dichlorobenzene	ND	5.0	**		"				
2,2-Dichloropropane	ND	5.0		u.	H-78			W	
2-Butanone	ND	100		0	10			**	
2-Hexanone	ND	50	**	n	"			• •	
4-Methyl-2-pentanone	ND	50							
Acetone	ND	100		0			Tr.		
Benzene	ND	5.0						**	
Bromobenzene	ND	5.0							
Bromochloromethane	ND	5.0		0					
Bromodichloromethane	ND	5.0		6	100			16	
Bromoform	ND	5.0	· ·		"				
Bromomethane	ND	10			"			•	
Carbon tetrachloride	ND	5.0	**		"		"		
Chlorobenzene	ND	5.0			"	"		•	
Chloroethane	ND	5.0			"				
Chloroform	ND	5.0	**		"			•	
Chloromethane	ND	10			"		"		
cis-1,2-Dichloroethene	ND	5.0		"	"			•	
cis-1,3-Dichloropropene	ND	5.0			"				
Dibromochloromethane	ND	5.0			"			•	
Dibromomethane	ND	5.0	**					•	
Dichlorodifluoromethane (Freon 12)	ND	10	**				"	•	
Di-isopropyl ether	ND	5.0			"			•	
Ethyl tert-butyl ether	ND	5.0							
Ethylbenzene	ND	5.0				"	"	•	
Hexachlorobutadiene	ND	5.0	u	n					
Isopropylbenzene	ND	5.0			n	ii i			
Methyl tert-butyl ether	ND	5.0	**	0	11		·ir	in .	
Methylene chloride	ND	20		6			-	•	

Page 31 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-13 (Composite) (19A0904-46) Soil	Sampled: 01/17/19 09:55	Received:	01/17/19	16:35					
Naphthalene	ND	5.0	μg/kg	1	1900522	6	01/21/19	EPA 8260B	
n-Butylbenzene	ND	5.0	"	0		v			
n-Propylbenzene	ND	5.0	**		**			•	
o-Chlorotoluene	ND	5.0			100	6		w	
p-Chlorotoluene	ND	5.0	**	6	10	n		10	
p-Isopropyltoluene	ND	5.0	**	n	"	· ·		• •	
sec-Butylbenzene	ND	5.0		· ·	10	6	w	· W	
Styrene	ND	5.0	,,,	0			m.		
tert-Amyl methyl ether	ND	5.0	"					***	
tert-Butyl alcohol	ND	50		· ·		0	w	· · · · · ·	
tert-Butylbenzene	ND	5.0	**	0					
Tetrachloroethene	ND	5.0	**	6			n .	10	
Toluene	ND	5.0		0		0			
trans-1,2-Dichloroethene	ND	5.0			91	n.	w	w.	
rans-1,3-Dichloropropene	ND	5.0	**	0	16				
Trichloroethene	ND	5.0	**	6		0			
Trichlorofluoromethane	ND	5.0					w.	w.	
Vinyl chloride	ND	10	**		**	n		**	
Xylenes (total)	ND	10	ü	n		ø			
Surrogate: 1,2-Dichloroethane-d4		100 %	50	-125	"	6	"		
Surrogate: 4-Bromofluorobenzene		119%	50	-128			"	71	
Surrogate: Toluene-d8		90 %	62	-125	"	0	"		
SB-14 (Composite) (19A0904-50) Soil	Sampled: 01/17/19 09:20	Received:	01/17/19	16:35					
1,1,1,2-Tetrachloroethane	ND	5.0	μg/kg	1	1900522	01/21/19	01/21/19	EPA 8260B	
1,1,1-Trichloroethane	ND	5.0	"						
1,1,2,2-Tetrachloroethane	ND	5.0					- N		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	5.0		•					
1,1,2-Trichloroethane	ND	5.0	"	6	- 11		•		
1,1-Dichloroethane	ND	5.0	**	n	**				

Page 32 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-14 (Composite) (19A0904-50) Soil	Sampled: 01/17/19 09:20	Received:	01/17/19	16:35					
,1-Dichloroethene	ND	5.0	μg/kg	1	1900522	6	01/21/19	EPA 8260B	
,1-Dichloropropene	ND	5.0	"	0		w			
,2,3-Trichlorobenzene	ND	5.0	**	n					
,2,3-Trichloropropane	ND	5.0			11.0			w	
,2,4-Trichlorobenzene	ND	5.0		6	10				
,2,4-Trimethylbenzene	ND	5.0	**	n	**	0			
,2-Dibromo-3-chloropropane	ND	10							
,2-Dibromoethane (EDB)	ND	5.0		6			10		
,2-Dichlorobenzene	ND	5.0							
,2-Dichloroethane	ND	5.0		w.					
,2-Dichloropropane	ND	5.0	,,,	6			10		
,3,5-Trimethylbenzene	ND	5.0	- 10		100				
,3-Dichlorobenzene	ND	5.0	11						
,3-Dichloropropane	ND	5.0							
,4-Dichlorobenzene	ND	5.0	20						
2,2-Dichloropropane	ND	5.0	**			"			
2-Butanone	ND	100							
2-Hexanone	ND	50	**						
4-Methyl-2-pentanone	ND	50							
Acetone	ND	100							
Benzene	ND	5.0							
Bromobenzene	ND	5.0	"			"	"		
Bromochloromethane	ND	5.0	**			"	"		
Bromodichloromethane	ND	5.0	**			"			
Bromoform	ND	5.0	"			"	"		
Bromomethane	ND	10				"	"		
Carbon tetrachloride	ND	5.0					"		
Chlorobenzene	ND	5.0	и	n					
Chloroethane	ND	5.0						w	
Chloroform	ND	5.0	**	0			-		
Chloromethane	ND	10		6	16				

Page 33 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-14 (Composite) (19A0904-50) Soil	Sampled: 01/17/19 09:20	Received:	01/17/19	16:35					
cis-1,2-Dichloroethene	ND	5.0	μg/kg	1	1900522	6	01/21/19	EPA 8260B	
cis-1,3-Dichloropropene	ND	5.0	"	6		v			
Dibromochloromethane	ND	5.0	*						
Dibromomethane	ND	5.0			(- / m)				
Dichlorodifluoromethane (Freon 12)	ND	10		6	10	n	-90	10	
Di-isopropyl ether	ND	5.0	*		"			• •	
Ethyl tert-butyl ether	ND	5.0			n				
Ethylbenzene	ND	5.0		0			10		
Hexachlorobutadiene	ND	5.0			11		- 40		
Isopropylbenzene	ND	5.0				0			
Methyl tert-butyl ether	ND	5.0		0					
Methylene chloride	ND	20			1.0			10	
Naphthalene	ND	5.0	ü		"		"		
n-Butylbenzene	ND	5.0			"		"		
n-Propylbenzene	ND	5.0	**		"	"	"		
o-Chlorotoluene	ND	5.0	**		"	"			
p-Chlorotoluene	ND	5.0			"		"		
p-Isopropyltoluene	ND	5.0	"		"		"		
sec-Butylbenzene	ND	5.0	u	"	"	"	"		
Styrene	ND	5.0			"				
tert-Amyl methyl ether	ND	5.0			"		"		
tert-Butyl alcohol	ND	50			"		"		
tert-Butylbenzene	ND	5.0	**		"	"		•	
Tetrachloroethene	ND	5.0	"		"				
Toluene	ND	5.0			"		"		
rans-1,2-Dichloroethene	ND	5.0	**	"		"	"	•	
rans-1,3-Dichloropropene	ND	5.0		•		"	"		
Trichloroethene	ND	5.0	н	n	· ·			•	
Trichlorofluoromethane	ND	5.0		"		n	"		
Vinyl chloride	ND	10	**	0			**	•	
Xylenes (total)	ND	10		6			1961	-	

Page 34 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-14 (Composite) (19A0904-50) Soil	Sampled: 01/17/19 09:20	Received:	01/17/19	16:35					
Surrogate: 1,2-Dichloroethane-d4		97%	50	0-125	1900522	6	01/21/19	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		115 %	50	0-128	"	w	"	"	
Surrogate: Toluene-d8		89 %	62	2-125	"	0	"		
SB-15 (Composite) (19A0904-54) Soil	Sampled: 01/17/19 09:00	Received:	01/17/19	16:35					
1,1,1,2-Tetrachloroethane	ND	5.0	μg/kg	1	1900522	01/21/19	01/21/19	EPA 8260B	
1,1,1-Trichloroethane	ND	5.0	н					-11	
1,1,2,2-Tetrachloroethane	ND	5.0		0	. 11	0	· · ·		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	5.0	, OH		- 11	6	10		
1,1,2-Trichloroethane	ND	5.0			100				
1,1-Dichloroethane	ND	5.0	.,						
1,1-Dichloroethene	ND	5.0				"		•	
1,1-Dichloropropene	ND	5.0				"		"	
1,2,3-Trichlorobenzene	ND	5.0				"	"		
1,2,3-Trichloropropane	ND	5.0	H		"	"	"		
1,2,4-Trichlorobenzene	ND	5.0				"			
1,2,4-Trimethylbenzene	ND	5.0				"			
1,2-Dibromo-3-chloropropane	ND	10	H			"			
1,2-Dibromoethane (EDB)	ND	5.0				"		"	
1,2-Dichlorobenzene	ND	5.0	**			"		"	
1,2-Dichloroethane	ND	5.0	H		"	"			
1,2-Dichloropropane	ND	5.0				"		*	
1,3,5-Trimethylbenzene	ND	5.0				"		"	
1,3-Dichlorobenzene	ND	5.0	"			"		•	
1,3-Dichloropropane	ND	5.0		"		"		"	
1,4-Dichlorobenzene	ND	5.0		"		"		•	
2,2-Dichloropropane	ND	5.0		"		"			
2-Butanone	ND	100							
2-Hexanone	ND	50		0	11		-11		
4-Methyl-2-pentanone	ND	50							
Acetone	ND	100				ii ii			

Page 35 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-15 (Composite) (19A0904-54) Soil	Sampled: 01/17/19 09:00	Received:	01/17/19	16:35					
Benzene	ND	5.0	μg/kg	1	1900522		01/21/19	EPA 8260B	
Bromobenzene	ND	5.0	"			0			
Bromochloromethane	ND	5.0	**		"				
Bromodichloromethane	ND	5.0			(- / m)				
Bromoform	ND	5.0		.00	10		***	-10	
Bromomethane	ND	10	**	•	"	· ·		•	
Carbon tetrachloride	ND	5.0				6			
Chlorobenzene	ND	5.0	,	0	· ·		11		
Chloroethane	ND	5.0	"		11	· ·		***	
Chloroform	ND	5.0		u ·		0	. 10	· W	
Chloromethane	ND	10	,,,	0					
cis-1,2-Dichloroethene	ND	5.0	11	6	110		n.		
cis-1,3-Dichloropropene	ND	5.0	ü	"	"		"		
Dibromochloromethane	ND	5.0			"		"		
Dibromomethane	ND	5.0		"	"	"	"		
Dichlorodifluoromethane (Freon 12)	ND	10					"		
Di-isopropyl ether	ND	5.0		"	"		"		
Ethyl tert-butyl ether	ND	5.0	*				"	•	
Ethylbenzene	ND	5.0	u	"	"	"	"		
Hexachlorobutadiene	ND	5.0					"		
Isopropylbenzene	ND	5.0		"	"		"		
Methyl tert-butyl ether	ND	5.0					"	•	
Methylene chloride	ND	20	W			"	"	•	
Naphthalene	ND	5.0	*				"		
n-Butylbenzene	ND	5.0		"	"		"	•	
n-Propylbenzene	ND	5.0			"	"	"	•	
o-Chlorotoluene	ND	5.0				"	"		
p-Chlorotoluene	ND	5.0	u	n	· · ·				
p-Isopropyltoluene	ND	5.0		"					
sec-Butylbenzene	ND	5.0		0		0		•	
Styrene	ND	5.0		6			-	n i	

Page 36 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-15 (Composite) (19A0904-54) Soil	Sampled: 01/17/19 09:00	Received:	01/17/19	16:35					
tert-Amyl methyl ether	ND	5.0	μg/kg	1	1900522	61	01/21/19	EPA 8260B	
tert-Butyl alcohol	ND	50	"	6		v	*		
tert-Butylbenzene	ND	5.0	**	n				• •	
Tetrachloroethene	ND	5.0			110	0		W	
Toluene	ND	5.0	**	6	10		**	**	
trans-1,2-Dichloroethene	ND	5.0	**		"			***	
trans-1,3-Dichloropropene	ND	5.0		· ·	W	6			
Trichloroethene	ND	5.0		0	10	•	11		
Trichlorofluoromethane	ND	5.0	"			OU.			
Vinyl chloride	ND	10		· ·	n .				
Xylenes (total)	ND	10		0	11	•			
Surrogate: 1,2-Dichloroethane-d4		99 %	50	-125	"		"	· ·	
Surrogate: 4-Bromofluorobenzene		116%	50	-128	*	0	"		
Surrogate: Toluene-d8		98 %	62	-125	"	6	"	"	

Page 37 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

Walnut Creek, CA 94596

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

> COC #: Project Manager: Melissa McAssey

CAM 17 Metals - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1900547 - EPA 3050B										
Blank (1900547-BLK1)				Prepared:	01/22/19 A	nalyzed: 01	/23/19			
Beryllium	ND	0.20	mg/kg							
Cobalt	ND	0.20	W							
Vanadium	ND	0.20								
Chromium	ND	0.20								
Nickel	ND	0.20								
Copper	ND	0.20	"							
Zinc	ND	0.50								
Arsenic	ND	0.20								
Selenium	ND	0.50	"							
Silver	ND	0.20								
Molybdenum	ND	0.20								
Cadmium	ND	0.10								
Barium	ND	0.20								
Antimony	ND	0.50	"							
Thallium	ND	0.20								
Lead	ND	0.50	**							
LCS (1900547-BS1)				Prepared: (01/22/19 A	nalyzed: 01	/23/19			
Beryllium	8.91	0.20	mg/kg	10.0		89	75-125			
Cobalt	9.92	0.20		10.0		99	75-125			
Vanadium	9.46	0.20		10.0		95	75-125			
Chromium	9.44	0.20	**	10.0		94	75-125			
Nickel	9.49	0.20		10.0		95	75-125			
Copper	9.10	0.20		10.0		91	75-125			
Zinc	8.86	0.50	11	10.0		89	75-125			
Arsenic	9.58	0.20	**	10.0		96	75-125			
Selenium	9.65	0.50		10.0		97	75-125			
Silver	9.26	0.20	**	10.0		93	75-125			
Molybdenum	9.61	0.20		10.0		96	75-125			
Cadmium	9.86	0.10	n n	10.0		99	75-125			
Barium	9.73	0.20		10.0		97	75-125			
Antimony	9.04	0.50	"	10.0		90	75-125			

Page 38 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

Walnut Creek, CA 94596

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Project Manager: Melissa McAssey COC #:

CAM 17 Metals - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1900547 - EPA 3050B										
LCS (1900547-BS1)				Prepared:	01/22/19 A	nalyzed: 01	/23/19			
Thallium	9.76	0.20	mg/kg	10.0		98	75-125			
Lead	9.83	0.50	**	10.0		98	75-125			
Matrix Spike (1900547-MS1)	Sou	rce: 19A0873-	-01	Prepared: (01/22/19 A	nalyzed: 01	/23/19			
Beryllium	9.45	2.0	mg/kg	10.0	0.500	90	75-125			
Cobalt	20.0	2.0		10.0	10.3	98	75-125			
Vanadium	59.8	2.0		10.0	46.3	135	75-125			QM-
Chromium	55.1	2.0	N.	10.0	40.4	147	75-125			QM-
Nickel	51.7	2.0	**	10.0	39.2	125	75-125			
Copper	31.8	2.0		10.0	22.2	97	75-125			
Zinc	52.7	5.0		10.0	42.9	98	75-125			QM-
Arsenic	17.1	2.0		10.0	8.37	87	75-125			
Selenium	9.25	5.0		10.0	0.520	87	75-125			
Silver	8.84	2.0	**	10.0	0.200	86	75-125			
Molybdenum	5.63	2.0	n	10.0	1.18	45	75-125			QM-
Cadmium	10.5	1.0	n n	10.0	0.330	102	75-125			
Barium	202	2.0		10.0	177	253	75-125			QM-
Antimony	0.520	5.0		10.0	ND	5	75-125			QM-
Thallium	9.77	2.0	ii ii	10.0	0.130	96	75-125			
Lead	15.9	5.0	n	10.0	6.03	99	75-125			
Matrix Spike Dup (1900547-MSD1)	Sou	rce: 19A0873-	-01	Prepared:	01/22/19 A	nalyzed: 01	/23/19			
Beryllium	9.76	2.0	mg/kg	10.0	0.500	93	75-125	3	30	
Cobalt	19.8	2.0		10.0	10.3	96	75-125	1	30	
Vanadium	57.2	2.0		10.0	46.3	109	75-125	4	30	
Chromium	54.0	2.0		10.0	40.4	136	75-125	2	30	QM-
Nickel	49.6	2.0	"	10.0	39.2	103	75-125	4	30	QM-
Copper	30.9	2.0		10.0	22.2	87	75-125	3	30	
Zinc	52.5	5.0		10.0	42.9	96	75-125	0.3	30	QM-
Arsenic	15.6	2.0		10.0	8.37	72	75-125	9	30	QM-
Selenium	8.22	5.0		10.0	0.520	77	75-125	12	30	
Silver	8.96	2.0		10.0	0.200	88	75-125	1	30	

Page 39 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Project Manager: Melissa McAssey COC #:

CAM 17 Metals - Quality Control

	A	Reporting		Spike	Source		%REC	700	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 1900547 - EPA 3050B

Walnut Creek, CA 94596

Matrix Spike Dup (1900547-MSD1)	Source	: 19A0873-	-01	Prepared:	01/22/19 Ar	nalyzed: 0	1/23/19			
Molybdenum	5.71	2.0	mg/kg	10.0	1.18	45	75-125	1	30	QM-5
Cadmium	10.2	1.0		10.0	0.330	98	75-125	4	30	
Barium	174	2.0		10.0	177	NR	75-125	15	30	QM-5
Antimony	0.520	5.0	"	10.0	ND	5	75-125	0	30	QM-5
Thallium	9.68	2.0	. 11	10.0	0.130	96	75-125	0.9	30	
Lead	15.5	5.0		10.0	6.03	95	75-125	3	30	

Page 40 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Extractable Petroleum Hydrocarbons by EPA Method 8015M - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	resun	2	Cimo	Leve.	TO DATE	70100			Limit	1,0103
Batch 1900515 - EPA 3510B GCNV										
Blank (1900515-BLK1)				Prepared &	Analyzed:	01/21/19				
Diesel	ND	1.0	mg/kg							
Motor Oil	ND	1.0								
Surrogate: o-Terphenyl	0.572		"	0.500		114	65-135			
LCS (1900515-BS1)				Prepared &	Analyzed:	01/21/19				
Diesel	41.8	1.0	mg/kg	50.0		84	65-135			
Surrogate: o-Terphenyl	0.538		"	0.500		108	65-135			
LCS Dup (1900515-BSD1)				Prepared &	Analyzed:	01/21/19				
Diesel	43.9	1.0	mg/kg	50.0		88	65-135	5	30	
Surrogate: o-Terphenyl	0.576		n.	0.500		115	65-135			
Matrix Spike (1900515-MS1)	Sou	rce: 19A0873-	-01	Prepared &	Analyzed:	01/21/19				
Diesel	58.4	1.0	mg/kg	50.0	ND	117	59-138			
Surrogate: o-Terphenyl	0.465	-	"	0.500		93	65-135			
Matrix Spike Dup (1900515-MSD1)	Sou	rce: 19A0873-	-01	Prepared &	Analyzed:	01/21/19				
Diesel	52.4	1.0	mg/kg	50.0	ND	105	59-138	11	37	
Surrogate: o-Terphenyl	0.438		"	0.500		88	65-135			

Page 41 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Metals by EPA 6000/7000 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1900458 - EPA 3050B										
Blank (1900458-BLK1)				Prepared:	01/18/19 A	nalyzed: 01	/21/19			
Lead	ND	2.5	mg/kg							
LCS (1900458-BS1)				Prepared:	01/18/19 A	nalyzed: 01	/21/19			
Lead	92.5	2.5	mg/kg	100		92	75-125			
Matrix Spike (1900458-MS1)	Sou	rce: 19A0646	-01	Prepared:	01/18/19 A	nalyzed: 01	/21/19			
Lead	83.5	2.5	mg/kg	100	0.546	83	75-125			
Matrix Spike Dup (1900458-MSD1)	Sou	rce: 19A0646	-01	Prepared:	01/18/19 A	nalyzed: 01	/21/19			
Lead	81.4	2.5	mg/kg	100	0.546	81	75-125	3	30	
Batch 1900459 - EPA 3050B										
Blank (1900459-BLK1)				Prepared:	01/18/19 A	nalyzed: 01	/21/19			
Lead	ND	2.5	mg/kg							
LCS (1900459-BS1)				Prepared:	01/18/19 A	nalyzed: 01	/21/19			
Lead	89.7	2.5	mg/kg	100		90	75-125			
Matrix Spike (1900459-MS1)	Sou	rce: 19A0904	-14	Prepared:	01/18/19 A	nalyzed: 01	/21/19			
Lead	63.2	2.5	mg/kg	100	4.18	59	75-125			QM-
Matrix Spike Dup (1900459-MSD1)	Sou	rce: 19A0904	-14	Prepared:	01/18/19 A	nalyzed: 01	/21/19			
Lead	72.1	2.5	mg/kg	100	4.18	68	75-125	13	30	QM-
Batch 1900498 - EPA 3050B										
Blank (1900498-BLK1)				Prepared:	01/21/19 A	nalyzed: 01	/24/19			
Lead	ND	2.5	mg/kg							

Page 42 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Metals by EPA 6000/7000 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1900498 - EPA 3050B										
LCS (1900498-BS1)				Prepared: (01/21/19 A	nalyzed: 01	/24/19			
Lead	53.0	2.5	mg/kg	100		53	75-125			QM-1
Matrix Spike (1900498-MS1)	Sou	rce: 19A0904	-40	Prepared: (01/21/19 A	nalyzed: 01	/24/19			
Lead	115	2.5	mg/kg	100	36.3	79	75-125			
Matrix Spike Dup (1900498-MSD1)	Sou	rce: 19A0904	-40	Prepared:	01/21/19 A	nalyzed: 01	/24/19			
Lead	117	2.5	mg/kg	100	36.3	80	75-125	1	30	

Page 43 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Reporting

Organochlorine Pesticides by EPA Method 8081A - Quality Control

Spike

Source

%REC

RPD

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1900504 - LUFT-DHS GCNV										
Blank (1900504-BLK1)				Prepared: (01/21/19 A	nalyzed: 01	/22/19			
Aldrin	ND	1.0	μg/kg							
alpha-BHC	ND	1.7	11							
beta-BHC	ND	1.7								
gamma-BHC (Lindane)	ND	1.7								
delta-BHC	ND	1.7	**							
Chlordane-technical	ND	3.3	**							
4,4'-DDD	ND	3.3	**							
4,4'-DDE	ND	3.3								
4,4'-DDT	ND	3.3								
Dieldrin	ND	1.0								
Endosulfan I	ND	1.7								
Endosulfan II	ND	3.3	11							
Endosulfan sulfate	ND	3.3	**							
Endrin	ND	3.3	**							
Endrin aldehyde	ND	3.3	**							
Heptachlor	ND	1.7								
Heptachlor epoxide	ND	1.7	9							
Methoxychlor	ND	17	ir							
Mirex	ND	3.3								
Toxaphene	ND	20	ir.							
Surrogate: Tetrachloro-meta-xylene	6.00		"	8.33		72	46-139			
Surrogate: Decachlorobiphenyl	8.31		H	8.33		100	52-141			
LCS (1900504-BS1)				Prepared:	01/21/19 A	nalyzed: 01	/22/19			
Aldrin	15.0	1.0	μg/kg	16.7		90	47-132			
gamma-BHC (Lindane)	14.4	1.7		16.7		86	56-133			
4,4'-DDT	20.4	3.3		16.7		122	46-137			
Dieldrin	17.2	1.0	. 10	16.7		103	44-143			
Endrin	17.9	3.3	-	16.7		108	30-147			
Heptachlor	15.2	1.7	ir .	16.7		91	33-148			
Surrogate: Tetrachloro-meta-xylene	6.52		и	8.33		78	46-139			

Page 44 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Organochlorine Pesticides by EPA Method 8081A - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1900504 - LUFT-DHS GCNV										
LCS (1900504-BS1)				Prepared:	01/21/19 A	nalyzed: 01	/22/19			
Surrogate: Decachlorobiphenyl	8.49		μg/kg	8.33		102	52-141			
LCS Dup (1900504-BSD1)				Prepared:	01/21/19 A	nalyzed: 01	/22/19			
Aldrin	13.9	1.0	μg/kg	16.7	1 -	84	47-132	7	30	
gamma-BHC (Lindane)	13.3	1.7		16.7		80	56-133	8	30	
4,4'-DDT	17.3	3.3		16.7		104	46-137	17	30	
Dieldrin	15.9	1.0		16.7		95	44-143	8	30	
Endrin	16.4	3.3		16.7		98	30-147	9	30	
Heptachlor	14.0	1.7	· ir	16.7		84	33-148	8	30	
Surrogate: Tetrachloro-meta-xylene	6.02			8.33		72	46-139			
Surrogate: Decachlorobiphenyl	8.12		**	8.33		97	52-141			
Matrix Spike (1900504-MS1)	Sou	rce: 19A1000-	01	Prepared:	01/21/19 A	nalyzed: 01	/22/19			
Aldrin	13.9	1.0	μg/kg	16.7	ND	83	47-138			
gamma-BHC (Lindane)	14.4	1.7	"	16.7	ND	87	38-144			
4,4'-DDT	20.1	3.3	**	16.7	ND	121	41-157			
Dieldrin	16.0	1.0	*	16.7	ND	96	46-155			
Endrin	16.7	3.3		16.7	ND	100	34-149			
Heptachlor	14.7	1.7	ii ii	16.7	ND	88	36-155			
Surrogate: Tetrachloro-meta-xylene	15.6		"	20.8		75	46-139			
Surrogate: Decachlorobiphenyl	20.6		**	20.8		99	52-141			
Matrix Spike Dup (1900504-MSD1)	Sou	rce: 19A1000-	01	Prepared:	01/21/19 A	nalyzed: 01	/22/19			
Aldrin	15.2	1.0	μg/kg	16.7	ND	91	47-138	9	35	
gamma-BHC (Lindane)	15.3	1.7		16.7	ND	92	38-144	6	35	
4,4'-DDT	21.1	3.3	"	16.7	ND	127	41-157	5	35	
Dieldrin	17.1	1.0	n ·	16.7	ND	103	46-155	7	35	
Endrin	17.8	3.3	**	16.7	ND	107	34-149	6	35	
Heptachlor	16.0	1.7	*	16.7	ND	96	36-155	8	35	
Surrogate: Tetrachloro-meta-xylene	15.4		"	20.8		74	46-139			
Surrogate: Decachlorobiphenyl	19.5		"	20.8		94	52-141			

Page 45 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 COC #: Project Manager: Melissa McAssey

Polychlorinated Biphenyls by EPA Method 8082A - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1900505 - LUFT-DHS GCNV										
Blank (1900505-BLK1)				Prepared: (01/21/19 A	nalyzed: 01	/22/19			
Aroclor 1016	ND	20	μg/kg							
Aroclor 1221	ND	20	11							
Aroclor 1232	ND	20								
Aroclor 1242	ND	20	"							
Aroclor 1248	ND	20	**							
Aroclor 1254	ND	20								
Aroclor 1260	ND	20	*							
Aroclor 1268	ND	20								
Surrogate: Decachlorobiphenyl	7.31		"	8.33		88	50-150			
LCS (1900505-BS1)				Prepared: (01/21/19 A	nalyzed: 01	/22/19			
Aroclor 1260	68.0	20	μg/kg	83.3		82	29-131			
Surrogate: Decachlorobiphenyl	7.39		"	8.33		89	50-150			
LCS Dup (1900505-BSD1)				Prepared: (01/21/19 A	nalyzed: 01	/22/19			
Aroclor 1260	67.2	20	μg/kg	83.3		81	29-131	1	30	
Surrogate: Decachlorobiphenyl	7.55		"	8.33		91	50-150			
Matrix Spike (1900505-MS1)	Sou	rce: 19A0904-	19	Prepared: (01/21/19 A	nalyzed: 01	/22/19			
Aroclor 1260	65.1	20	μg/kg	83.3	ND	78	29-131			
Surrogate: Decachlorobiphenyl	6.35		"	8.33		76	50-150			
Matrix Spike Dup (1900505-MSD1)	Sou	rce: 19A0904-	19	Prepared: (01/21/19 A	nalyzed: 01	/22/19			
Aroclor 1260	66.3	20	μg/kg	83.3	ND	80	29-131	2	30	
Surrogate: Decachlorobiphenyl	5.12		"	8.33		61	50-150			

Page 46 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: CLS Work Order #: 19A0904 [none]

Walnut Creek, CA 94596 COC #: Project Manager: Melissa McAssey

Polynuclear Aromatic Compounds by EPA Method 8270C - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
		-	-	2000	, , , , , , , , , , , , , , , , , , , ,	1,000				* 15.00
Batch 1900433 - EPA 3545										
Blank (1900433-BLK1)				Prepared &	Analyzed:	01/18/19				
Acenaphthene	ND	330	μg/kg							
Acenaphthylene	ND	330	11							
Anthracene	ND	330								
Benzo (a) anthracene	ND	330	"							
Benzo (b) fluoranthene	ND	330								
Benzo (k) fluoranthene	ND	330								
Benzo (g,h,i) perylene	ND	330	"							
Benzo (a) pyrene	ND	330								
Chrysene	ND	330	W							
Dibenz (a,h) anthracene	ND	330	ii ii							
Dibenzofuran	ND	330	n							
Fluoranthene	ND	330								
Fluorene	ND	330	**							
Indeno (1,2,3-cd) pyrene	ND	330	"							
2-Methylnaphthalene	ND	330								
Naphthalene	ND	330	"							
Phenanthrene	ND	330	**							
Pyrene	ND	330								
Surrogate: Nitrobenzene-d5	2190		"	2670		82	23-120			
Surrogate: 2-Fluorobiphenyl	2120		"	2670		79	30-115			
Surrogate: Terphenyl-dl4	2290		"	2670		86	18-137			
LCS (1900433-BS1)				Prepared &	Analyzed:	01/18/19				
Acenaphthene	2410	330	μg/kg	2670		90	31-137			
Pyrene	2330	330	n	2670		87	35-142			
Surrogate: Nitrobenzene-d5	2520		н	2670		95	23-120			
Surrogate: 2-Fluorobiphenyl	2480		*	2670		93	30-115			
Surrogate: Terphenyl-dl4	2650			2670		99	18-137			

Page 47 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Polynuclear Aromatic Compounds by EPA Method 8270C - Quality Control

	Reporting		Spike	Source		%REC		RPD	
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
			Prepared &	Analyzed:	01/18/19				
2370	330	μg/kg	2670		89	31-137	2	30	
2380	330		2670		89	35-142	2	36	
2280		"	2670		85	23-120			
2390		· n	2670		89	30-115			
2650		"	2670		99	18-137			
Sou	rce: 19A0643-	-01	Prepared:	01/18/19 A	nalyzed: 01	/21/19			
1700	330	μg/kg	2670	ND	64	31-137			
1010	330	n	2670	506	19	35-142			QM-
1660		"	2670		62	23-120			
1390			2670		52	30-115			
1090		H	2670		41	18-137			
Sou	rce: 19A0643-	-01	Prepared: (01/18/19 A	nalyzed: 01	/21/19			
1400	330	μg/kg	2670	ND	53	31-137	19	30	
880	330		2670	506	14	35-142	14	36	QM-
1380		"	2670		52	23-120			
1160		"	2670		44	30-115			
888		"	2670		33	18-137			
	2370 2380 2280 2390 2650 Sou 1700 1010 1660 1390 1090 Sou 1400 880	2370 330 2380 330 2280 2390 2650 Source: 19A0643- 1700 330 1010 330 1660 1390 1090 Source: 19A0643- 1400 330 880 330 1380 1160	Result Limit Units 2370 330 μg/kg 2380 330 " 2280 " 2390 " 2650 " 2650 " Source: 19A0643-01 1700 330 μg/kg 1010 330 " 1660 " " 1090 " " Source: 19A0643-01 1400 330 μg/kg 880 330 " 1380 " " 1160 " "	Result Limit Units Level 2370 330 μg/kg 2670 2380 330 " 2670 2390 " 2670 2650 " 2670 Source: 19A0643-01 Prepared: 4 1700 330 μg/kg 2670 1010 330 " 2670 1390 " 2670 1090 " 2670 Source: 19A0643-01 Prepared: 4 1400 330 μg/kg 2670 880 330 " 2670 1380 " 2670 1160 " 2670	Prepared & Analyzed: 2370 330 μg/kg 2670 2380 330 " 2670 2390 " 2670 2650 " 2670 Source: 19A0643-01 Prepared: 01/18/19 A 1700 330 μg/kg 2670 ND 1010 330 " 2670 506 1390 " 2670 -	Result Limit Units Level Result %REC Prepared & Analyzed: 01/18/19 2370 330 μg/kg 2670 89 2380 330 " 2670 89 2280 " 2670 89 2390 " 2670 89 2650 " 2670 99 Source: 19A0643-01 Prepared: 01/18/19 Analyzed: 01 1700 330 μg/kg 2670 ND 64 1010 330 " 2670 506 19 1660 " 2670 506 19 1660 " 2670 52 1090 41 Source: 19A0643-01 Prepared: 01/18/19 Analyzed: 01 1400 330 μg/kg 2670 ND 53 880 330 " 2670 ND 53 880 330 " 2670 506 1	Prepared & Analyzed: 01/18/19 Prepared & Analyzed: 01/18/19 2370 330 μg/kg 2670 89 31-137 2380 330 " 2670 89 35-142 2280 " 2670 89 30-115 2390 " 2670 89 30-115 2650 " 2670 99 18-137 Source: 19A0643-01 Prepared: 01/18/19 Analyzed: 01/21/19 1700 330 μg/kg 2670 ND 64 31-137 1010 330 " 2670 506 19 35-142 1660 " 2670 506 19 35-142 1900 " 2670 52 30-115 1090 " 2670 52 30-115 1090 " 2670 ND 53 31-137 880 330 " 2670 ND 53 31-137 880 <	Result Limit Units Level Result %REC Limits RPD Prepared & Analyzed: 01/18/19 2370 330 μg/kg 2670 89 31-137 2 2380 330 " 2670 89 35-142 2 2280 " 2670 89 30-115 2650 " 2670 89 30-115 2650 " 2670 99 18-137 Source: 19A0643-01 Prepared: 01/18/19 Analyzed: 01/21/19 1700 330 μg/kg 2670 ND 64 31-137 1010 330 " 2670 506 19 35-142 1660 " 2670 52 30-115 1090 " 2670 41 18-137 Source: 19A0643-01 Prepared: 01/18/19 Analyzed: 01/21/19 1400 330 μg/kg 2670 ND 53 31-137 19	Prepared & Analyzed: 01/18/19

Page 48 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

TPH-Gasoline by GC FID - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	Linit	Cinto	Level	- court	, sacto	Lillits		Linix	. 10103
Batch 1900604 - EPA 8150B										
Blank (1900604-BLK1)				Prepared &	Analyzed:	01/22/19				
Gasoline	ND	1.0	mg/kg							
Surrogate: o-Chlorotoluene (Gas)	0.0173		"	0.0200		86	65-135			
LCS (1900604-BS1)				Prepared &	Analyzed:	01/22/19				
Gasoline	2.22	1.0	mg/kg	2.00		111	65-135			
Surrogate: o-Chlorotoluene (Gas)	0.0187		#	0.0200		94	65-135			
LCS Dup (1900604-BSD1)				Prepared &	Analyzed:	01/22/19				
Gasoline	2.16	1.0	mg/kg	2.00		108	65-135	3	30	
Surrogate: o-Chlorotoluene (Gas)	0.0174		#	0.0200		87	65-135			
Matrix Spike (1900604-MS1)	Sou	rce: 19A1104-	02	Prepared &	Analyzed:	01/22/19				
Gasoline	2.06	1.0	mg/kg	2.00	ND	103	63-124			
Surrogate: o-Chlorotoluene (Gas)	0.0165		"	0.0200		82	65-135			
Matrix Spike Dup (1900604-MSD1)	Sou	rce: 19A1104-	02	Prepared &	Analyzed:	01/22/19				
Gasoline	0.950	1.0	mg/kg	2.00	ND	48	63-124	74	35	QM
Surrogate: o-Chlorotoluene (Gas)	0.00530		"	0.0200		26	65-135			QS

Page 49 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Project Manager: Melissa McAssey COC #:

Volatile Organic Compounds by EPA Method 8260B - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 1900522 - EPA 5035A

Walnut Creek, CA 94596

Blank (1900522-BLK1)				Prepared & Analyzed: 01/21/19
Di-isopropyl ether	ND	5.0	μg/kg	
Acetone	ND	100	11	
Ethyl tert-butyl ether	ND	5.0		
Methyl tert-butyl ether	ND	5.0		
tert-Amyl methyl ether	ND	5.0	"	
tert-Butyl alcohol	ND	50	**	
Benzene	ND	5.0	"	
Bromobenzene	ND	5.0		
Bromochloromethane	ND	5.0	0	
Bromodichloromethane	ND	5.0		
Bromoform	ND	5.0	in.	
Bromomethane	ND	10		
2-Butanone	ND	100	**	
n-Butylbenzene	ND	5.0	"	
sec-Butylbenzene	ND	5.0	"	
tert-Butylbenzene	ND	5.0		
Carbon tetrachloride	ND	5.0		
Chlorobenzene	ND	5.0		
Chloroethane	ND	5.0		
Chloroform	ND	5.0		
Chloromethane	ND	10		
o-Chlorotoluene	ND	5.0		
p-Chlorotoluene	ND	5.0		
Dibromochloromethane	ND	5.0		
1,2-Dibromo-3-chloropropane	ND	10		
1,2-Dibromoethane (EDB)	ND	5.0	"	
Dibromomethane	ND	5.0	n	
1,2-Dichlorobenzene	ND	5.0		
1,3-Dichlorobenzene	ND	5.0	"	
1,4-Dichlorobenzene	ND	5.0		
Dichlorodifluoromethane (Freon 12)	ND	10		

Page 50 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Volatile Organic Compounds by EPA Method 8260B - Quality Control

13.1										
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 1900522 - EPA 5035A

Blank (1900522-BLK1)				Prepared & Analyzed: 01/21/19
1,1-Dichloroethane	ND	5.0	μg/kg	
1,2-Dichloroethane	ND	5.0	11	
1,1-Dichloroethene	ND	5.0	"	
cis-1,2-Dichloroethene	ND	5.0	**	
trans-1,2-Dichloroethene	ND	5.0		
1,2-Dichloropropane	ND	5.0	**	
1,3-Dichloropropane	ND	5.0		
2,2-Dichloropropane	ND	5.0		
1,1-Dichloropropene	ND	5.0	**	
cis-1,3-Dichloropropene	ND	5.0		
trans-1,3-Dichloropropene	ND	5.0	in	
Ethylbenzene	ND	5.0	n	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	5.0	**	
Hexachlorobutadiene	ND	5.0	"	
2-Hexanone	ND	50	"	
Isopropylbenzene	ND	5.0		
p-Isopropyltoluene	ND	5.0	11	
Methylene chloride	ND	20		
4-Methyl-2-pentanone	ND	50	**	
Methyl tert-butyl ether	ND	5.0	**	
Naphthalene	ND	5.0		
n-Propylbenzene	ND	5.0	**	
Styrene	ND	5.0	n	
,1,2,2-Tetrachloroethane	ND	5.0	**	
1,1,1,2-Tetrachloroethane	ND	5.0	"	
Tetrachloroethene	ND	5.0	**	
Toluene	ND	5.0	n.	
,2,3-Trichlorobenzene	ND	5.0	n	
,2,4-Trichlorobenzene	ND	5.0	11	
1,1,2-Trichloroethane	ND	5.0	"	
1,1,1-Trichloroethane	ND	5.0	n	

Page 51 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

Result

30.7

26.0

Analyte

Surrogate: Toluene-d8

Surrogate: 4-Bromofluorobenzene

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Units

Spike

Level

Source

Result

%REC

Blank (1900522-BLK1)				Prepared & Analy	yzed: 01/21/19		
Trichloroethene	ND	5.0	μg/kg				
Trichlorofluoromethane	ND	5.0	11				
1,2,3-Trichloropropane	ND	5.0	"				
1,3,5-Trimethylbenzene	ND	5.0	**				
1,2,4-Trimethylbenzene	ND	5.0	**				
Vinyl chloride	ND	10	11				
Xylenes (total)	ND	10	"				
Di-isopropyl ether	ND	5.0					
Ethyl tert-butyl ether	ND	5.0	n n				
tert-Amyl methyl ether	ND	5.0	"				
tert-Butyl alcohol	ND	50					
Surrogate: Toluene-d8	27,8		"	30.0	93	60-140	
Surrogate: 1,2-Dichloroethane-d4	19.3		"	30.0	64	50-125	
Surrogate: Toluene-d8	27.8		"	30.0	93	62-125	
Surrogate: 4-Bromofluorobenzene	29.5		*	30.0	98	50-128	
LCS (1900522-BS1)				Prepared & Analy	yzed: 01/21/19		
Methyl tert-butyl ether	18.8	5.0	μg/kg	20.0	94	60-140	
Benzene	14.8	5.0	,m	20.0	74	64-135	
Benzene	14.8	5.0	n	20.0	74	60-140	
Chlorobenzene	18.3	5.0	11	20.0	92	67-133	
1,1-Dichloroethene	17.3	5.0	"	20.0	87	53-137	
Toluene	18.1	5.0	.11	20.0	91	61-138	
Trichloroethene	19.5	5.0	n	20.0	97	64-130	
Surrogate: Toluene-d8	30.7		"	30.0	102	60-140	
Surrogate: 1,2-Dichloroethane-d4	19.5		"	30.0	65	50-125	

30.0

30.0

102

62-125

50-128

RPD

Limit

Notes

%REC

Limits

RPD

Page 52 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1900522 - EPA 5035A										
LCS Dup (1900522-BSD1)				Prepared &	& Analyzed:	01/21/19				
Methyl tert-butyl ether	19.7	5.0	μg/kg	20.0		98	60-140	5	30	
Benzene	15.6	5.0	11	20.0		78	64-135	5	30	
Benzene	15.6	5.0		20.0		78	60-140	5	30	
Chlorobenzene	17.3	5.0		20.0		87	67-133	6	30	
1,1-Dichloroethene	17.0	5.0		20.0		85	53-137	2	30	
Toluene	18.7	5.0	**	20.0		94	61-138	3	30	
Trichloroethene	20.0	5.0		20.0		100	64-130	3	30	
Surrogate: Toluene-d8	30.0		"	30.0		100	60-140			
Surrogate: 1,2-Dichloroethane-d4	18.7		"	30.0		62	50-125			
Surrogate: Toluene-d8	30.0			30.0		100	62-125			
Surrogate: 4-Bromofluorobenzene	24.7		· n	30.0		82	50-128			
Matrix Spike (1900522-MS1)	Sou	rce: 19A0873-	-01	Prepared &	& Analyzed:	01/21/19				
Methyl tert-butyl ether	21.1	5.0	μg/kg	20.0	ND	105	60-140			
Benzene	16.4	5.0		20.0	ND	82	58-139			
Benzene	16.4	5.0		20.0	ND	82	60-140			
Chlorobenzene	14.1	5.0		20.0	ND	71	62-134			
1,1-Dichloroethene	12.9	5.0	11	20.0	ND	65	53-152			
Toluene	14.9	5.0	**	20.0	ND	75	58-139			
Trichloroethene	29.4	5.0	п	20.0	ND	147	55-138			QM-5
Surrogate: Toluene-d8	32.3		"	30.0		108	60-140			
Surrogate: 1,2-Dichloroethane-d4	26.4		"	30.0		88	50-125			
Surrogate: Toluene-d8	32.3		· n	30.0		108	62-125			
Surrogate: 4-Bromofluorobenzene	23.4			30.0		78	50-128			
Matrix Spike Dup (1900522-MSD1)	Sou	rce: 19A0873-	-01	Prepared &	Analyzed:	01/21/19				
Methyl tert-butyl ether	29.0	5.0	μg/kg	20.0	ND	145	60-140	32	30	QM-5
Benzene	17.7	5.0		20.0	ND	89	58-139	8	30	
Benzene	17.7	5.0		20.0	ND	89	60-140	8	30	
Chlorobenzene	15.5	5.0		20.0	ND	77	62-134	9	30	
1,1-Dichloroethene	14.3	5.0		20.0	ND	71	53-152	10	30	
Toluene	13.4	5.0	**	20.0	ND	67	58-139	11	30	

Page 53 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Project Manager: Melissa McAssey COC #:

Volatile Organic Compounds by EPA Method 8260B - Quality Control

	A-0.	Reporting		Spike	Source		%REC	77.7	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 1900522 - EPA 5035A

Walnut Creek, CA 94596

Matrix Spike Dup (1900522-MSD1)	Source: 19A0873-01			Prepared &	Analyzed:	01/21/19			
Trichloroethene	27.0	5.0	μg/kg	20.0	ND	135	55-138	9	30
Surrogate: Toluene-d8	24.1		"	30.0		80	60-140		
Surrogate: 1,2-Dichloroethane-d4	32.1		"	30.0		107	50-125		
Surrogate: Toluene-d8	24.1		"	30.0		80	62-125		
Surrogate: 4-Bromofluorobenzene	24.5		"	30.0		82	50-128		

Page 54 of 54 01/29/19 08:45

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A0904

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #:

Notes and Definitions

TPH-X	Although the sample contains compounds in the retention time range of target parameter, the chromatogram was not consistent with the expected chromatographic pattern or "fingerprint". However, the reported concentration is based on the target parameter.
QS-4	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QRL-8	The extract of this sample was dark and/or oily. Therefore, the sample was analyzed with a dilution and the reporting limit was raised for all target compounds.
QM-5	The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.
QM-1	The spike recovery was outside acceptance limits for the LCS or LCSD. The batch was accepted based on acceptable MS/MSD recoveries & RPD's.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit (or method detection limit when specified)
NR	Not Reported
dry	Sample results reported on a dry weight basis

Relative Percent Difference

RPD

McCampbell Analytical, Inc. "When Quality Counts"

Analytical Report

1901928 WorkOrder:

Report Created for: **CLS Labs**

3249 Fitzgerald Road

Rancho Cordova, CA 95742

Project Contact: Mark Smith

Project P.O.:

Project: 19A0904

Project Received: 01/18/2019

Analytical Report reviewed & approved for release on 01/28/2019 by:

Yen Cao

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: CLS Labs Project: 19A0904 WorkOrder: 1901928

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client: **CLS Labs** Date Received: 1/18/19 12:35 Date Prepared: 1/23/19

19A0904 Project:

WorkOrder:

1901928

Extraction Method: SW7471B

Analytical Method: SW7471B

Unit: mg/Kg

	Mercury by C	Cold Vapor	Atomic Ab	sorption	1	
Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID
SB-5 (Composite)	1901928-0 <mark>01</mark> A	Soil	01/17/2019	12:40	AA1 _20	171814
<u>Analytes</u>	Result		RL	DF		Date Analyzed
Mercury	0.27		0.017	1		01/24/2019 10:57

Analyst(s): JC

Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID
SB-12 (Composite)	1901928-002A	Soil	01/17/2019	10:25	AA1 _21	171814
Analytes	Result		RL	DF		Date Analyzed
Mercury	0.11		0.017	1		01/24/2019 11:00

Analyst(s): JC

Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID
SB-15 (Composite)	1901928-003A	Soil	01/17/2019	09:00	AA1 _22	171814
Analytes	Result		RL	DF		Date Analyzed
Mercury	0.083		0.017	1		01/24/2019 11:03

Analyst(s): JC

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Client: **CLS Labs** Date Prepared: 1/22/19 Date Analyzed: 1/24/19 **Instrument:** AA1

Soil

Project: 19A0904

Matrix:

WorkOrder:

1901928

BatchID:

171814

Extraction Method: SW7471B

Analytical Method: SW7471B

Unit:

mg/Kg

Sample ID: MB/LCS/LCSD-171814

QC Summar	y Report for I	Mercury	
МВ	MDL	RL	

Analyte	MB Result	MDL	RL		
Mercury	ND	0.0087	0.017	7.4%	 -

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Mercury	0.17	0.17	0.17	100	99	80-120	0.773	20

This page intentionally left blank

(;
2	
5	
7	5
ŧ	É
t	5
2	7
	•
=	5
2	2
()
3	Ξ
7	7
()
(2
-	>

Pittsburg, CA 94565-1701 1534 Willow Pass Rd (925) 252-9262

EDF WriteOn WaterTrax

✓ Email EQuIS WorkOrder: 1901928

Dry-Weight

Detection Summary

Excel

CHAIN-OF-CUSTODY RECORD

ClientCode: CLSR

HardCopy

QuoteID: 192002

Page 1 of 1

□ J-flag ThirdParty

5 days;

Requested TAT:

01/18/2019 01/18/2019

Date Received:

Date Logged:

marks@californialab.com; dataroom@calif	Accounts Payable
	CLS Labs
	3249 Fitzgerald Road
19A0904	Rancho Cordova, CA 95742

١		
		3
		elo
		d b
		len
		leg
		9
		S
		sts
		Ĕ
		teo
		les
		edi
		ď
510		
44		
63		
(91		
FAX: (916) 638-4510		
×		
FA		
301		
116) 638-730		
638		
(9		
9		
	ı	

Project:

Rancho Cordova, CA 95742

3249 Fitzgerald Road

Mark Smith CLS Labs

Report to:

9

cc/3rd Party.

Email:

Lab ID	Client ID	Matrix	Collection Date Hold	Hold	-	2	3	4	2	9	7	œ	6	10	=	12
1901928-001	SB-5 (Composite)	Soil	1/17/2019 12:40		A											
1901928-002	SB-12 (Composite)	Soil	1/17/2019 10:25		A	Ħ	T	Ī		Ī						
1901928-003	SB-15 (Composite)	Soil	1/17/2019 09:00		A			Ī					ľ			

Test Legend:

|--|

3	
7	
11	

Prepared by: Agustina Venegas

Pag**Bur** Pag**Bur** Pag**Bur**

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.nccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	Client Name: CLS LABS				Project: 19A0904	A0904				Work	Work Order: 1901928	901928 FVFI 2
Contact's E	mail: marks@cali	Contact's Email: marks@californialab.com; dataroom@californialab.com	oom@califomi	alab.com	Comments:					Date 1	Date Logged: 1/18/2019	/18/2019
		WaterTrax	WriteOn	DEDF	Excel	EQUIS	Email	HardCopy	☐ HardCopy ☐ ThirdParty ☐ J-flag	<u> </u>	lag	
Lab ID	Client ID	Matrix	Matrix Test Name		Conta /Com	Containers Bottle	Containers Bottle & Preservative // Composites	De- Co	Collection Date TAT Sediment Hold SubOut & Time Content	TAT	Sediment Content	Hold SubOut
1901928-001A	901928-001A SB-5 (Composite)	Soil	SW7471B (Mercury)	rcury)	5	40,	40Z GJ, Unpres		1/17/2019 12:40 5 days	5 days		
1901928-002A	901928-002A SB-12 (Composite)	Soil	SW7471B (Mercury)	rcury)		40)	40Z GJ, Unpres		1/17/2019 10:25 5 days	5 days		
1901928-003A	901928-003A SB-15 (Composite)	Soil	SW7471B (Mercury)	rcury)		40.	40Z GJ, Unpres		1/17/2019 9:00 5 days	5 days		

- STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission). NOTES:

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

Page 730 of 792

Page 1 of 1

SUBCONTRACT ORDER 19A0904

192002 QUOTE 10:

Sampler

Samplers

Samplera

SENDING LABORATORY:

CLS Labs

3249 Fitzgerald Rd.

Rancho Cordova, CA 95742

Phone: 916-638-7301 Fax: 916-638-4510

Project Manager: Mark Smith

RECEIVING LABORATORY:

McCampbell Analytical Inc.

1534 Willow Pass Road

Pittsburg, CA 94565-1701

Phone: (925) 252-9262

Fax: (925) 252-9269

Analysis	TAT	Due	Expires	Laboratory ID	Sample Date	Received	Matrix
Mercury	5	01/25/19 1	2:00 02/14/19 12:40	19A0904-19	01/17/19 12:40	01/17/19 16:35	Soil

7470A/7471A (SUB)

Mercury

Client sample ID: SB-5 (Composite)

Laboratory sample ID: 19A0904-19

Please use client sample ID on all reports

Containers Supplied:

4 oz. jar (B)

01/25/19 12:00 02/14/19 10:25 19A0904-43 01/17/19 10:25 01/17/19 16:35 Soil Mercury

7470A/7471A (SUB)

Client sample ID: SB-12 (Composite)

Laboratory sample ID: 19A0904-43

Please use client sample ID on all reports

Containers Supplied:

4 oz. jar (B)

01/17/19 09:00 01/17/19 16:35 Soil 01/25/19 12:00 02/14/19 09:00 19A0904-54 Mercury

7470A/7471A (SUB)

Client sample ID: SB-15 (Composite)

Laboratory sample ID: 19A0904-54

Please use client sample ID on all reports

Containers Supplied:

4 oz. jar (B)

Relinquished

Shipped By

Relinquisi Date

Dat

Airbill Number

Received

Received By

Page 1 of 1

Page 731 of 792

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name: Project:	CLS Labs 19A0904				Date and Time Received Date Logged: Received by:	1/18/2019 12:35 1/18/2019 Jena Alfaro
WorkOrder №: Carrier:	1901928 Client Drop-In	Matrix: Soil			Logged by:	Agustina Venegas
		Chain of 0	Custod	y (COC)	Information	
Chain of custod	y present?	7	Yes	•	No 🗆	
Chain of custod	y signed when relin	quished and received?	Yes	•	No 🗆	
Chain of custod	y agrees with samp	le labels?	Yes	•	No 🗆	
	ed by Client on CO		Yes	•	No 🗆	
Date and Time	of collection noted b	by Client on COC?	Yes	•	No 🗌	
Sampler's name	noted on COC?		Yes	•	No 🗆	
COC agrees wit	h Quote?		Yes		No 🗆	NA 🗹
		Samp	ole Rec	eipt Infor	mation	
Custody seals in	ntact on shipping co	ntainer/cooler?	Yes		No 🗆	NA 🗹
Shipping contain	ner/cooler in good o	ondition?	Yes	•	No 🗆	
Samples in prop	per containers/bottle	es?	Yes	•	No 🗆	
Sample containe	ers intact?		Yes	~	No 🗆	
Sufficient sample	e volume for indica	ted test?	Yes	•	No 🗌	
		Sample Preservat	ion and	Hold Ti	me (HT) Information	
All samples rece	eived within holding	time?	Yes	•	No 🗆	NA 🗆
Samples Receiv	ved on Ice?		Yes	•	No 🗌	
		(Ice Typ	e: WE	ET ICE)	
Sample/Temp B	Blank temperature			Temp	: 4.1°C	NA 🗆
Water - VOA via	als have zero heads	pace / no bubbles?	Yes		No 🗆	NA 🗹
Sample labels of	hecked for correct p	preservation?	Yes	1	No 🗌	
pH acceptable u <2; 522: <4; 218		<2; Nitrate 353.2/4500NO3:	Yes		No 🗆	NA 🗹
UCMR Samples	<u>:</u>				7.3	1.2
pH tested and 530: ≤7; 541:	acceptable upon re	eceipt (200.8: ≤2; 525. : ≤4;)?	Yes		No 🗌	NA 🗹
Free Chlorine	tested and accepta	ble upon receipt (<0.1mg/L)?	Yes		No 🗆	NA 🗹
					========	=======
Comments:						

February 05, 2019

CLS Work Order #: 19A1500

COC #: GREEN

Melissa McAssey WRECO - Walnut Creek 1243 Alpine Rd Suite 108 Walnut Creek, CA 94596

Project Name: North 12th Street Complete Street Project

Enclosed are the results of analyses for samples received by the laboratory on 01/29/19 18:31. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely

James Liang, Ph.D. Laboratory Director

CA SWRCB ELAP Accreditation/Registration number 1233

CHANGE OF STATUS

Work Order # 19A0909
New Work Order Revise Existing Work Order
Project Name: NORTH 12TH STREET COMPLETE STREET PROJECT
Date Sample(s) Were Received: 1/17/19 Original Date 1/24/19
Mchess McAssey of WRECO called/emailed (Company)
On 1/29/15 at 61831 (email) (Date) (Time)
and requested the following;
Dun STLC - LEAD on Samples:
12 (58-4-0-1')
16 (SB-5-0-1') -28 (SB-7-0-1') 17 (SB-5-1-2') -24 (SB-7-1-2')
-36(3B-11-0-1')
9 (SB-5-COND) -48 (SB-14-19-21)
) (SB-6-0-1')
1200 STLC - Chromium on sample
5ALSB-15- composite)
Turnaround time requested for additional work: Signature
Updated lab job database and file folder by: W 2a

Page 2 of 5 02/05/19 12:28

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A1500

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #: GREEN

STLC (WET) Metals by 6000/7000 Series Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-4-0-1' (19A1500-12) Soil Sampled: 01/17/19 15:3	0 Receiv	ed: 01/29/19 1	18:31						
Lead	3.2	0.50	mg/L	1	1900909	02/04/19	02/04/19	EPA 6010B	
SB-5-0-1' (19A1500-16) Soil Sampled: 01/17/19 12:-	0 Receiv	ed: 01/29/19 1	8:31						
Lead	1.8	0.50	mg/L	1	1900909	02/04/19	02/04/19	EPA 6010B	
SB-5-1-2' (19A1500-17) Soil Sampled: 01/17/19 12:4	0 Receiv	ed: 01/29/19 1	8:31						
Lead	13	0.50	mg/L	1	1900909	02/04/19	02/04/19	EPA 6010B	
SB-5 (Composite) (19A1500-19) Soil Sampled: 01/1	7/19 12:40	Received: 0	1/29/19 1	8:31		4.70			
Lead	5.2	0.50	mg/L	ı	1900909	02/04/19	02/04/19	EPA 6010B	
SB-6-0-1' (19A1500-20) Soil Sampled: 01/17/19 13:0	0 Receiv	ed: 01/29/19 1	8:31						
Lead	11	0.50	mg/L	1	1900909	02/04/19	02/04/19	EPA 6010B	
SB-7-0-1' (19A1500-23) Soil Sampled: 01/17/19 12:	5 Receiv	ed: 01/29/19 1	18:31						
Lead	2.0	0.50	mg/L	1	1900909	02/04/19	02/04/19	EPA 6010B	
SB-7-1-2' (19A1500-24) Soil Sampled: 01/17/19 12:	5 Receiv	ed: 01/29/19 1	8:31						
Lead	4.3	0.50	mg/L	1	1900909	02/04/19	02/04/19	EPA 6010B	
SB-11-0-1' (19A1500-36) Soil Sampled: 01/17/19 10	10 Recei	ved: 01/29/19	18:31						
Lead	3.2	0.50	mg/L	1.	1900909	02/04/19	02/04/19	EPA 6010B	
SB-14-1-2' (19A1500-48) Soil Sampled: 01/17/19 09	20 Recei	ived: 01/29/19	18:31						
Lead	1.5	0.50	mg/L	ı	1900909	02/04/19	02/04/19	EPA 6010B	

Page 3 of 5 02/05/19 12:28

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A1500

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #: GREEN

STLC (WET) Metals by 6000/7000 Series Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-15 (Composite) (19A1500-54) Soil	Sampled: 01/17/19 09:00	Received:	01/29/19	18:31					
Chromium	ND	0.50	mg/L	1	1900909	02/04/19	02/04/19	EPA 6010B	

Page 4 of 5 02/05/19 12:28

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A1500

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #: GREEN

STLC (WET) Metals by 6000/7000 Series Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1900909 - EPA 3010A										
Blank (1900909-BLK1)				Prepared &	Analyzed:	02/04/19				
Lead	ND	0.50	mg/L							
Chromium	ND	0.50	"							
LCS (1900909-BS1)				Prepared &	Analyzed:	02/04/19				
Lead	57.3	0.50	mg/L	50.0		115	75-125			
Chromium	56.8	0.50		50.0		114	80-120			
Matrix Spike (1900909-MS1)	Sou	rce: 19A1500-	12	Prepared &	Analyzed:	02/04/19				
Lead	51.3	0.50	mg/L	50.0	3.22	96	75-125			
Chromium	50.5	0.50		50.0	0.110	101	75-125			
Matrix Spike Dup (1900909-MSD1)	Sou	rce: 19A1500-	12	Prepared &	Analyzed:	02/04/19				
Lead	51.7	0.50	mg/L	50.0	3.22	97	75-125	0.9	30	
Chromium	51.1	0.50		50.0	0.110	102	75-125	1	30	

Page 5 of 5 02/05/19 12:28

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19A1500

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #: GREEN

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit (or method detection limit when specified)

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

February 14, 2019

CLS Work Order #: 19B0438

COC #: GREEN

Melissa McAssey WRECO - Walnut Creek 1243 Alpine Rd Suite 108 Walnut Creek, CA 94596

Project Name: North 12th Street Complete

Street Project

Enclosed are the results of analyses for samples received by the laboratory on 02/07/19 20:10. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely

James Liang, Ph.D. Laboratory Director

CA SWRCB ELAP Accreditation/Registration number 1233

CHANGE OF STATUS

	Work Order #	1940904	
New Wor	k OrderRevise	Existing Work Order	
Project Name:	orth 12+ eccived: 1/17	Coriginal Date	e
(Client Cont	ofof	(Company)	called/emailed
On	2/7/19 at _	8:20 PM (Time)	
	perform		on
Sange	2 SB-5- SB-5(SB-6-	-1-2 (17) Composite) O-1 (20)	(19)
Turnaround time requ	nested for additional work		/19
	pase and file folder by:	ar 2/7/19 201	3.2)
Ce:	BRANCH STATE OF THE STATE OF TH		

Page 2 of 4 02/14/19 15:21

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19B0438

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #: GREEN

TCLP Metals by 6000/7000 Series Methods

	2.44	Reporting	100		20.5	21.47	4.1,057	Table!	. See 5
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-5-1-2' (19B0438-17) Soil Sampled: 01	1/17/19 12:40 Receive	d: 02/07/19 2	0:10						
Lead	ND	0.50	mg/L	1	1901160	02/12/19	02/13/19	EPA 6010B	
SB-5 (Composite) (19B0438-19) Soil San	npled: 01/17/19 12:40	Received: 02	2/07/19 20	0:10					
Lead	0.53	0.50	mg/L	1	1901160	02/12/19	02/13/19	EPA 6010B	
SB-6-0-1' (19B0438-20) Soil Sampled: 01	1/17/19 13:00 Receive	ed: 02/07/19 2	0:10						
Lead	0.82	0.50	mg/L	1	1901160	02/12/19	02/13/19	EPA 6010B	

Page 3 of 4 02/14/19 15:21

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19B0438

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #: GREEN

TCLP Metals by 6000/7000 Series Methods - Quality Control

77.0		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1901160 - EPA 3010A TCLP										
Blank (1901160-BLK1)				Prepared:	02/12/19 A	nalyzed: 02	/13/19			
Lead	ND	0.50	mg/L							
LCS (1901160-BS1)				Prepared:	02/12/19 A	nalyzed: 02	/13/19			
Lead	54.9	0.50	mg/L	50.0		110	75-125			
Matrix Spike (1901160-MS1)	Sou	rce: 19B0438-	17	Prepared: (02/12/19 A	nalyzed: 02	/13/19			
Lead	52.4	0.50	mg/L	50.0	0.0818	105	75-125			
Matrix Spike Dup (1901160-MSD1)	Sou	rce: 19B0438-	17	Prepared: (02/12/19 A	nalyzed: 02	/13/19			
Lead	52.5	0.50	mg/L	50.0	0.0818	105	75-125	0.3	30	

Page 4 of 4 02/14/19 15:21

WRECO - Walnut Creek Project: North 12th Street Complete Street Project

1243 Alpine Rd Suite 108 Project Number: [none] CLS Work Order #: 19B0438

Walnut Creek, CA 94596 Project Manager: Melissa McAssey COC #: GREEN

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit (or method detection limit when specified)

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

This page intentionally left blank

Preliminary Site Investigation-Aerially Deposited Lead Study North 12th Street Complete Streets Project City of Sacramento, Sacramento County, California

WRECO P18121

Appendix C ProUCL 5.1 - 95% Upper Confidence Limit Calculations

August 2019 Page 745 of 792

This page intentionally left blank

MI.	Α	В	С	D	E	F
1	Company:	WRECO				
2	Computed by:	F. Banks				
3	Checked by:	M. McAssey				
4	Date:	2/20/2019				
5	Subject:	P18121 North 1	2th St. UCL S	ample Set with	out Outliers	
6				1 12 1		
7	Sample Data	Not Detected	Sample Data	Not Detected	Sample Data	Not Detected
8	Lead_0_1	D_Lead_0_1	Lead_1_2	D_Lead_1_2	Lead_2_3	D_Lead_2_3
9	3.7	1	4.8	1	4.5	1
10	7.9	1	3.2	1	4.8	1
11	30	1	4.2	1	3.9	1
12	79	- 1	5.9	1	4.2	1
13	73	1	72	1		0
14	130	1	2.5	0	5.7	1
15	2.5	0	12	1	4.6	1
16	2.8	. 1	19	1	1	0
17	8.6	1	9.6		2.5	0
18	65	1	17	1	6.8	1
19	36	- 1	29	1		0
20	31	1	53	1	7.7	1
21	35	1	6.8	1		
22	45	1	1			

	A B C D	E Outlies Test	F for Colont	G od Vesiables	H	I	J	K	L
1	User Selected Options		s for Selecti	ed variables	excluding n	ondetects			
2			12.EC AM						
3	Date/Time of Computation ProUCL 5.1 From File			OL vila					
4	Full Precision	20190219 U OFF	CL W_PIOU	JL.XIS					
5	Full Predision	OFF							
6						T-			
7	Discorts Outline Took for Lond O. 1								
8	Dixon's Outlier Test for Lead_0_1								
9	Total N = 15						-		
10	Number NDs = 1								
11	Number Detects = 14				11 0 0 1			10 0	
14	10% critical value: 0.492								
13	5% critical value: 0.546								
14	1% critical value: 0.641								
15	Note: NDs excluded from Outlier Test								
16	The state of the s						+		
17	Data Value 250 is a Potential Outlier (Upper	Tail)?					+		
18	(oppor	ACTION OF							
19	Test Statistic: 0.706						+		
20	Control of the Control of the Control						+		
21	For 10% significance level, 250 is an outlier.						+		
23	For 5% significance level, 250 is an outlier.						+		
24	For 1% significance level, 250 is an outlier.						1		
25							+		
26	2. Data Value 2.8 is a Potential Outlier (Lower T	ail)?					1		
27									
28	Test Statistic: 0.067								
29			1						
30	For 10% significance level, 2.8 is not an outlier.								
31	For 5% significance level, 2.8 is not an outlier.								
32	For 1% significance level, 2.8 is not an outlier.								
33									
34									
35	Dixon's Outlier Test for Lead_1_2								
36									
37	Total N = 15								
38	Number NDs = 1		-						
39	Number Detects = 14			-					
40	10% critical value: 0.492								
41	5% critical value: 0.546								
42	1% critical value: 0.641								
43	Note: NDs excluded from Outlier Test								
44	Data Value 470 is a Potential Outlier (Upper	Tail\2							
45	i. Data value 470 is a Potential Outlier (Opper	ian)!							
46	Test Statistic: 0.856								
47	resi Sidusuc. 0.000								
48	For 10% significance level, 470 is an outlier.						1		
49	For 5% significance level, 470 is an outlier.						+		Page 748 of 7
50	For 1% significance level, 470 is an outlier.						+		age /40 UI /
51	1 or 170 significance level, 470 is all outlier.						+		
52			-						

7=1	A B C D E	F	G	Н	I	J	K	L
53	2. Data Value 3.2 is a Potential Outlier (Lower Tail)?							
54								
55	Test Statistic: 0.023							
56	Control of the State of the Sta							
57	For 10% significance level, 3.2 is not an outlier.							
58	For 5% significance level, 3.2 is not an outlier.							
59	For 1% significance level, 3.2 is not an outlier.							
60								
61								
62	Dixon's Outlier Test for Lead_2_3							
63								
64	Total N = 12							
65	Number NDs = 1							
66	Number Detects = 11	7						
67	10% critical value: 0.517							
68	5% critical value: 0.576							
69	1% critical value: 0.679							
70	Note: NDs excluded from Outlier Test							
71								
72	Data Value 100 is a Potential Outlier (Upper Tail)?							
73		1						
74	Test Statistic: 0.898							
75								
76	For 10% significance level, 100 is an outlier.							
77	For 5% significance level, 100 is an outlier.							
78	For 1% significance level, 100 is an outlier.							
79								
80	2. Data Value 3.9 is a Potential Outlier (Lower Tail)?	1						
81		1						
82	Test Statistic: 0.015							
83								
84	For 10% significance level, 3.9 is not an outlier.							
85	For 5% significance level, 3.9 is not an outlier.		4					
86	For 1% significance level, 3.9 is not an outlier.	4						
87								

)=L	A B C D	E	F	G	Н	1	J	K	L
1		Outlier Tests	for Selecte	d Variables	excluding n	ondetects			
2	User Selected Options								
3	In the state of th	2/20/2019 8:36							
4		20190219 UC	L w_ProUC	L.xls					
5	Full Precision	OFF							
6									
7									
8	Dixon's Outlier Test for Lead_0_1					-			
9									
10	Total N = 14								
11	Number NDs = 1		- 400		11000			11	
12	Number Detects = 13								
13	10% critical value: 0.467	1							
14	5% critical value: 0.521	2							
15	1% critical value: 0.615								
16	Note: NDs excluded from Outlier Test	-							
17		1							
18	Data Value 130 is a Potential Outlier (Upper	Tail)?	- (%)						
19									
20	Test Statistic: 0.451								
21									
22	For 10% significance level, 130 is not an outlier.								
23	For 5% significance level, 130 is not an outlier.								
24	For 1% significance level, 130 is not an outlier.								
25									
26	2. Data Value 2.8 is a Potential Outlier (Lower T	ail)?							
27									
28	Test Statistic: 0.067	2							
29									
30	For 10% significance level, 2.8 is not an outlier.								
31	For 5% significance level, 2.8 is not an outlier.								
32	For 1% significance level, 2.8 is not an outlier.								
33									
34	District Addition								
35	Dixon's Outlier Test for Lead_1_2								
36	Total N = 14								
37	Number NDs = 1		-						
38	Number NDS = 1								
39	10% critical value: 0.467								
40	5% critical value: 0.467				-				
41	1% critical value: 0.615				-				
42	Note: NDs excluded from Outlier Test				-				
43	1100 CAUGUE HOIT OUBER 1650								
44	Data Value 250 is a Potential Outlier (Upper	Tail)?							
45	250 Tales 255 is a Folkinda Gudier (Opper	3.7							
46	Test Statistic: 0.801								
47									
48	For 10% significance level, 250 is an outlier.								
49	For 5% significance level, 250 is an outlier.								age 750 of 792
50	For 1% significance level, 250 is an outlier.	-							ago 700 01 132
51	Service level 200 is all outlier.								
52				1					

	A B C D E	F	G	Н	I	J	K	L
53	2. Data Value 3.2 is a Potential Outlier (Lower Tail)?							
54								
55	Test Statistic: 0.023	1						
56								
57	For 10% significance level, 3.2 is not an outlier.							
58	For 5% significance level, 3.2 is not an outlier.	2-3-6						
59	For 1% significance level, 3.2 is not an outlier.							
60								
61								
62	Dixon's Outlier Test for Lead_2_3							
63								
64	Total N = 11							
65	Number NDs = 1							
66	Number Detects = 10							
67	10% critical value: 0.409							
68	5% critical value: 0.477							
69	1% critical value: 0.597							
70	Note: NDs excluded from Outlier Test							
71	Control to Control to the control to							
72	Data Value 44 is a Potential Outlier (Upper Tail)?							
73								
74	Test Statistic: 0.754							
75								
76	For 10% significance level, 44 is an outlier.							
77	For 5% significance level, 44 is an outlier.							
78	For 1% significance level, 44 is an outlier.							
79								
80	2. Data Value 3.9 is a Potential Outlier (Lower Tail)?							
81		2						
82	Test Statistic: 0.030							
83								
84	For 10% significance level, 3.9 is not an outlier.							
85	For 5% significance level, 3.9 is not an outlier.							
86	For 1% significance level, 3.9 is not an outlier.	4						
87								

	A B C D	E Outlier Test	F s for Selecte	G ad Variables	H excluding n	I	J	K	L	
1	User Selected Options		o for ocice	ou volidoica	cacidany n	ondeteeto				
2	Date/Time of Computation ProUCL 5.1		43-26 AM							
3	From File	20190219 U		OL via						
4			CL W_PIOU	JL.XIS						
5	Full Precision	OFF								
6	•			İ	T	I		1		
7										
8	Dixon's Outlier Test for Lead_0_1			1		-				
9										
10	Total N = 14									
11	Number NDs = 1									
12	Number Detects = 13									
13	10% critical value: 0.467								-	
14	5% critical value: 0.521		7							
15	1% critical value: 0.615									
16	Note: NDs excluded from Outlier Test									
17		115	1	1						
18	1. Data Value 130 is a Potential Outlier (Upper	Tail)?								l
19										1
20	Test Statistic: 0.451									1
767										
21	For 10% significance level, 130 is not an outlier.									1
22	For 5% significance level, 130 is not an outlier.									l
23	For 1% significance level, 130 is not an outlier.									1
24	To the digital control of the formation									ł
25	Data Value 2.8 is a Potential Outlier (Lower T	ail\?								l
26	2. Data Value 2.0 13 a 1 Oleman Guner (Lower 1	an):								ł
27	Test Statistic: 0.067									
28	Test Statistic. 0.007									ŀ
29	For 10% significance level, 2.8 is not an outlier.									ł
30										
31	For 5% significance level, 2.8 is not an outlier.									
32	For 1% significance level, 2.8 is not an outlier.									
33										
34										
35	Dixon's Outlier Test for Lead_1_2									
36										
37	Total N = 13									
38	Number NDs = 1									
39	Number Detects = 12									
40	10% critical value: 0.49									
41	5% critical value: 0.546									
42	1% critical value: 0.642									1
43	Note: NDs excluded from Outlier Test									
44			1							1
45	1. Data Value 72 is a Potential Outlier (Upper T	ail)?								1
46										1
47	Test Statistic: 0.634									1
48										1
10.3	For 10% significance level, 72 is an outlier.									1
49	For 5% significance level, 72 is an outlier.							ı	age 752 of 7	92
50	For 1% significance level, 72 is not an outlier.							'	.9 02 01 1	-
51	and a significant of the signifi									1
52				h income						J

2. Data Value 3.2 is a Potential Outlier (Lower Tail)?	-					K	_
Test Statistic: 0.032							
11 11 11 11 11 11 11 11 11 11 11 11 11							
For 1% significance level, 3.2 is not an outlier.							
Dixon's Outlier Test for Lead_2_3							
A TOTAL CONTROL OF THE PARTY OF							
2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -							
Note: NDs excluded from Outlier Test							
Dark Color of the American American							
Data Value 14 is a Potential Outlier (Upper Tail)?							
Test Statistic: 0.643							
	1 - 1						
		100					
For 1% significance level, 14 is an outlier.							
2. Data Value 3.9 is a Potential Outlier (Lower Tail)?							
	1						
Test Statistic: 0.079							
For 1% significance level, 3.9 is not an outlier.	4						
	For 10% significance level, 3.2 is not an outlier. For 5% significance level, 3.2 is not an outlier. For 1% significance level, 3.2 is not an outlier. Dixon's Outlier Test for Lead_2_3 Fotal N = 10 Number NDs = 1 Number Detects = 9 0% critical value: 0.441 6% critical value: 0.512 % critical value: 0.635 Note: NDs excluded from Outlier Test 1. Data Value 14 is a Potential Outlier (Upper Tail)? Fest Statistic: 0.643 For 10% significance level, 14 is an outlier. For 5% significance level, 14 is an outlier. For 1% significance level, 14 is an outlier. 2. Data Value 3.9 is a Potential Outlier (Lower Tail)?	For 10% significance level, 3.2 is not an outlier. For 5% significance level, 3.2 is not an outlier. For 1% significance level, 3.2 is not an outlier. Dixon's Outlier Test for Lead_2_3 Fotal N = 10 Number NDs = 1 Number Detects = 9 0% critical value: 0.441 6% critical value: 0.512 % critical value: 0.635 Note: NDs excluded from Outlier Test 1. Data Value 14 is a Potential Outlier (Upper Tail)? Fest Statistic: 0.643 For 10% significance level, 14 is an outlier. For 1% significance level, 14 is an outlier. 2. Data Value 3.9 is a Potential Outlier (Lower Tail)? Fest Statistic: 0.079 For 10% significance level, 3.9 is not an outlier.	For 10% significance level, 3.2 is not an outlier. For 5% significance level, 3.2 is not an outlier. For 1% significance level, 3.2 is not an outlier. Dixon's Outlier Test for Lead_2_3 Fotal N = 10 Number NDs = 1 Number Detects = 9 0% critical value: 0.441 9% critical value: 0.512 % critical value: 0.635 Note: NDs excluded from Outlier Test Data Value 14 is a Potential Outlier (Upper Tail)? Fest Statistic: 0.643 For 10% significance level, 14 is an outlier. For 5% significance level, 14 is an outlier. Data Value 3.9 is a Potential Outlier (Lower Tail)? Fest Statistic: 0.079 For 10% significance level, 3.9 is not an outlier.	For 10% significance level, 3.2 is not an outlier. For 5% significance level, 3.2 is not an outlier. For 1% significance level, 3.2 is not an outlier. Dixon's Outlier Test for Lead_2_3 Fotal N = 10 Rumber NDs = 1 Rumber Detects = 9 Rumber Detects = 9 Rumber in the significance level, 3.4 is an outlier. For 10% significance level, 14 is an outlier. For 1% significance level, 14 is an outlier. For 5% significance level, 14 is an outlier. For 1% significance level, 3.9 is not an outlier. For 5% significance level, 3.9 is not an outlier.	For 10% significance level, 3.2 is not an outlier. For 5% significance level, 3.2 is not an outlier. For 1% significance level, 3.2 is not an outlier. Dixon's Outlier Test for Lead_2_3 Fotal N = 10 Jumber NDs = 1 Jumber Detects = 9 O% critical value: 0.441 % critical value: 0.512 % critical value: 0.635 Jote: NDs excluded from Outlier Test Data Value 14 is a Potential Outlier (Upper Tail)? Fest Statistic: 0.643 For 10% significance level, 14 is an outlier. For 5% significance level, 14 is an outlier. Data Value 3.9 is a Potential Outlier (Lower Tail)? Fest Statistic: 0.079 For 10% significance level, 3.9 is not an outlier.	For 10% significance level, 3.2 is not an outlier. For 5% significance level, 3.2 is not an outlier. For 1% significance level, 3.2 is not an outlier. For 1% significance level, 3.2 is not an outlier. Dixon's Outlier Test for Lead_2_3 Fotal N = 10 Sumber NDs = 1 Sumber NDs = 1 Sumber NDs = 9 Official value: 0.441 Sor critical value: 0.441 Sor critical value: 0.635 Sote: NDs excluded from Outlier Test Data Value 14 is a Potential Outlier (Upper Tail)? For 5% significance level, 14 is an outlier. For 5% significance level, 14 is an outlier. For 1% significance level, 14 is an outlier. For 10% significance level, 14 is an outlier. For 10% significance level, 14 is an outlier. For 5% significance level, 14 is an outlier. For 5% significance level, 3.9 is not an outlier.	for 10% significance level, 3.2 is not an outlier. For 5% significance level, 3.2 is not an outlier. For 1% significance level, 3.2 is not an outlier. Dixon's Outlier Test for Lead_2_3 Fotal N = 10 Fotal N =

	A B C D	E Outlier Test	F	G od Variabler	H s excluding n	I	J	K	L	
1	User Selected Options		io ioi select	cu variable:	excluding II	unuelecis				
2	Date/Time of Computation ProUCL 5.1		46:00 AM							
3	From File		CONTRACTOR	OLII-						
4		20190219 U	JCL W_PIOU	CL.XIS						
5	Full Precision	OFF								
6				1	1			1		
7										
8	Dixon's Outlier Test for Lead_0_1			1	1-2-2-1	-				
9										
10	Total N = 14									
1.1.	Number NDs = 1		1 - 100 - 1		11 1	11				
14	Number Detects = 13									
10	10% critical value: 0.467									
14	5% critical value: 0.521									
15	1% critical value: 0.615									
16	Note: NDs excluded from Outlier Test									
17										1
18	1. Data Value 130 is a Potential Outlier (Upper	Tail)?								1
19										1
20	Test Statistic: 0.451									1
21										
	For 10% significance level, 130 is not an outlier.									1
	For 5% significance level, 130 is not an outlier.									
	For 1% significance level, 130 is not an outlier.									
25										
26	2. Data Value 2.8 is a Potential Outlier (Lower T	ail)?		Í						
27										
28	Test Statistic: 0.067									
29										
	For 10% significance level, 2.8 is not an outlier.									
31	For 5% significance level, 2.8 is not an outlier.									
32	For 1% significance level, 2.8 is not an outlier.									
33										
1.14.1				*						l
34	Dixon's Outlier Test for Lead_1_2									1
										1
36	Total N = 13			pr						1
37	Number NDs = 1									1
. 30	Number Detects = 12									1
39	10% critical value: 0.49			lie -						1
40	5% critical value: 0.546									1
41	1% critical value: 0.642									1
42	Note: NDs excluded from Outlier Test									1
40				-						1
44	Data Value 72 is a Potential Outlier (Upper T	ail)?								1
45										1
46	Test Statistic: 0.634									1
47	, ou orangin. 0.004									1
48	For 10% significance level, 72 is an outlier.			*						1
49	For 5% significance level, 72 is an outlier.								2000 754 -5	00
50	To the second se							<u> </u>	age 754 of 7	92
51	For 1% significance level, 72 is not an outlier.									
52										l

	A B C D E	F	G	Н	1	J	K	L
53	2. Data Value 3.2 is a Potential Outlier (Lower Tail)?							
54								
55	Test Statistic: 0.032							
56								
57	For 10% significance level, 3.2 is not an outlier.							
58	For 5% significance level, 3.2 is not an outlier.							
59	For 1% significance level, 3.2 is not an outlier.							
60								
61								
62	Dixon's Outlier Test for Lead_2_3							
63								
64	Total N = 9							
65	Number NDs = 1	4						
66	Number Detects = 8							
67	10% critical value: 0.479							
68	5% critical value: 0.554							
69	1% critical value: 0.683							
70	Note: NDs excluded from Outlier Test	1 - 40 -						
71								
72	Data Value 7.7 is a Potential Outlier (Upper Tail)?							
73								
74	Test Statistic: 0.257							
75		1 - 12						
76	For 10% significance level, 7.7 is not an outlier.							
77	For 5% significance level, 7.7 is not an outlier.		196					
78	For 1% significance level, 7.7 is not an outlier.							
79								
80	2. Data Value 3.9 is a Potential Outlier (Lower Tail)?	1 1						
81		7						
82	Test Statistic: 0.103							
83								
84	For 10% significance level, 3.9 is not an outlier.							
85	For 5% significance level, 3.9 is not an outlier.							
86	For 1% significance level, 3.9 is not an outlier.	4						
87			ME.					

HEL.	A B C	D E	F atistics for	G H I J K Data Sets with Non-Detects	L						
1		Homai OCL 30	auduo IUI	Date Colo Mili Moli Delecto							
2	User Selected Options										
3	Date/Time of Computation	ProUCL 5.12/20/2019 11:	-11-12 ΔM								
4	From File	20190219 UCL w_ProUC	3 TA 1 - 3 SY								
5	Full Precision	OFF	L.XIS								
6	Confidence Coefficient	95%									
7	- 9 300 720 72700000	2000									
8	Number of Bootstrap Operations	2000									
9	1101										
10	Lead_0_1										
11			Canada	Statistics							
12	Talk	I North and Characteristics		Number of Distinct Observations	14						
13	Total	Number of Observations	14	- SANCTA & STREET STREET	_ 88						
14		Number of Detects	. 05h	Number of Non-Detects	1						
15	N	umber of Distinct Detects	13	Number of Distinct Non-Detects	1						
16		Minimum Detect	2.8	Minimum Non-Detect	2.5						
17	P	Maximum Detect	130	Maximum Non-Detect	2.5						
18	Pa-	Variance Detects	1354	Percent Non-Detects	7.143%						
19		Mean Detects	42.08	SD Detects	36.79						
20		Median Detects	35	CV Detects	0.874						
21		Skewness Detects	1.134	Kurtosis Detects	1.341						
22		Mean of Logged Detects	3.234	SD of Logged Detects	1.214						
23											
24		Norm	al GOF Te	st on Detects Only							
25	S	Shapiro Wilk Test Statistic	0.893	Shapiro Wilk GOF Test							
26	5% S	hapiro Wilk Critical Value	0.866	Detected Data appear Normal at 5% Significance Lev	el						
27		Lilliefors Test Statistic	0.181 Lilliefors GOF Test								
28	5	% Lilliefors Critical Value	0.234	Detected Data appear Normal at 5% Significance Lev	el						
29		Detected Data a	appear Nor	mal at 5% Significance Level							
30											
31	Kaplan-	Meier (KM) Statistics usin	ng Normal (Critical Values and other Nonparametric UCLs							
32	Past 1	KM Mean	39.25	KM Variance	9.891						
33		KM SD	35.56	KM Standard Error of Mean	1264						
1		95% KM (BCA) UCL	54.19	97.5% KM (BCA) UCL	60.89						
34		95% KM (t) UCL	56.77	95% KM (Percentile Bootstrap) UCL	55.41						
35		95% KM (z) UCL	55.52	95% KM Bootstrap t UCL	62.61						
36		90% KM Chebyshev UCL	68.92	95% KM Chebyshev UCL	82.36						
37		7.5% KM Chebyshev UCL	101	99% KM Chebyshev UCL	137.7						
38		Shoojohor oʻoʻc	23.5	SS / A NIII S / SS / SS / SS / SS / SS / SS /	1980						
39			DI /2 S	Statistics							
40	DI 12	Normal		DL/2 Log-Transformed							
41	DUZ	Mean in Original Scale	39.16	Mean in Log Scale	3.019						
42		SD in Original Scale	36.99	SD in Log Scale	1.417						
43	Q5% + I	UCL (Assumes normality)	56.67	95% H-Stat UCL	223.8						
44		, or 100 - 101	_ 50 DE _	ided for comparisons and historical reasons	220.0						
45	DL/2	is not a recommended me	salou, prov	need for compansons and mountaineasons							
46			Cugasta	LUCI to Ura							
47			34,991.214.	I UCL to Use							
48		95% KM (t) UCL	56.77								
49	N. II. A. JOS SONES SERVICE	Haz ing garanna at a e-al	HOL								
50				rovided to help the user to select the most appropriate 95% UCP	age /56 of 7 9						
51		District Control of the Control of t		ta size, data distribution, and skewness.							
52	These recommendation	s are based upon the resul	ts of the sir	nulation studies summarized in Singh, Maichle, and Lee (2006).							

-	A B C D E However, simulations results will not cover all Real W	F orld data se	G H I J K ets; for additional insight the user may want to consult a statisticia	L in.
53		0,10,00,0	on the second management of the second secon	
55	Lead_1_2			
56				
57		General	Statistics	
58	Total Number of Observations	13	Number of Distinct Observations	13
59	Number of Detects	12	Number of Non-Detects	1
60	Number of Distinct Detects	12	Number of Distinct Non-Detects	1
61	Minimum Detect	3.2	Minimum Non-Detect	2.5
62	Maximum Detect	72	Maximum Non-Detect	2.5
63	Variance Detects	471.9	Percent Non-Detects	7.692%
64	Mean Detects	19.71	SD Detects	21.72
65	Median Detects	10.8	CV Detects	1.102
66	Skewness Detects	1.733	Kurtosis Detects	2.315
67	Mean of Logged Detects	2.5	SD of Logged Detects	1.004
68				
69			st on Detects Only	
70	Shapiro Wilk Test Statistic	0.756	Shapiro Wilk GOF Test	1.1
71	5% Shapiro Wilk Critical Value	0.859	Detected Data Not Normal at 5% Significance Level	
72	Lilliefors Test Statistic	0.263	Lilliefors GOF Test	
73	5% Lilliefors Critical Value	0.243	Detected Data Not Normal at 5% Significance Level	
74	Detected Data	Not Norm	al at 5% Significance Level	
75				
76		7.77	Critical Values and other Nonparametric UCLs	
77	KM Mean	18.38	KM Variance	5.939
78	KM SD	20.5	KM Standard Error of Mean	420.3
79	95% KM (BCA) UCL	29.38	97.5% KM (BCA) UCL	32.67
80	95% KM (t) UCL	28.97	95% KM (Percentile Bootstrap) UCL	28.8
81	95% KM (z) UCL	28.15	95% KM Bootstrap t UCL	43.66
82	90% KM Chebyshev UCL	36.2	95% KM Chebyshev UCL	44.27
83	97.5% KM Chebyshev UCL	55.47	99% KM Chebyshev UCL	77.48
84				
85		DL/2 S	Statistics	
86	DL/2 Normal		DL/2 Log-Transformed	
87	Mean in Original Scale	18.29	Mean in Log Scale	2.325
88	SD in Original Scale	21.42	SD in Log Scale	1.15
89	95% t UCL (Assumes normality)	28.88	95% H-Stat UCL	55.71
90	DL/2 is not a recommended me	ethod, prov	ided for comparisons and historical reasons	
91				
92		The state of the s	I UCL to Use	
93	Data appear Gai	тта, мау	want to try Gamma Distribution	-
94	Note: Connections as conting the solection of a 050/	LICI ere e	resided to be the year to relect the want appropriate OFW LICH	
95			rovided to help the user to select the most appropriate 95% UCL. Ita size, data distribution, and skewness.	
96			nulation studies summarized in Singh, Maichle, and Lee (2006).	
97			ets; for additional insight the user may want to consult a statisticia	ari.
98	However, simulations results will not cover all Real W	onu uata St	sta, for additional margin, the user may want to consult a statisticis	015
99	Lead_2_3			
100	Leau_z_0			
101		General	Statistics	age 757 of 792
102	Total Number of Observations	9	Number of Distinct Observations	9
103	Total Namicel Of Observations	3	Number of Missing Observations	3
104			Trained of Missing Observations	

	A B C D E Number of Detects	F 8	G H I J K Number of Non-Detects	1
105	Number of Distinct Detects	8	Number of Distinct Non-Detects	1
106	Minimum Detect	3.9	Minimum Non-Detects	2.5
107	Maximum Detect	7.7	Maximum Non-Detect	2.5
108	Variance Detects	1.816	Percent Non-Detects	11.11%
109	Mean Detects	5.275	SD Detects	1.348
110	Median Detects	4.7	CV Detects	0.255
111	Skewness Detects	1.024	Kurtosis Detects	-0.166
112	Mean of Logged Detects	1.637	SD of Logged Detects	0.24
113	Mean of Logged Detects	1.037	3D of Logged Detects	0.24
114	Nata: Sample size is small (e.g. <10)) if data are	e collected using ISM approach, you should use	
115			SM (ITRC, 2012) to compute statistics of interest.	
116			shev UCL to estimate EPC (ITRC, 2012).	
117			nparametric and All UCL Options of ProUCL 5.1	
118	Chebyshev OCE can be computed us	ang the Nor	iparametric and All OCL Options of ProoCL 5.1	
119	Norma	LCOF Test	on Detects Only	
120		0.879	Shapiro Wilk GOF Test	
121	Shapiro Wilk Test Statistic	1000		
122	5% Shapiro Wilk Critical Value	0.818	Detected Data appear Normal at 5% Significance Leve	el
123	Lilliefors Test Statistic	0.263	Lilliefors GOF Test	
124	5% Lilliefors Critical Value	0.283	Detected Data appear Normal at 5% Significance Leve	el .
125	Detected Data ap	ppear Norm	al at 5% Significance Level	
126	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			
127			ritical Values and other Nonparametric UCLs	0.505
128	KM Mean	4.967	KM Variance	0.525
129	KM SD	1.474	KM Standard Error of Mean	2.173
130	95% KM (BCA) UCL	5.856	97.5% KM (BCA) UCL	5.978
131	95% KM (t) UCL	5.944	95% KM (Percentile Bootstrap) UCL	5.8
132	95% KM (z) UCL	5.831	95% KM Bootstrap t UCL	6.277
133	90% KM Chebyshev UCL	6.543	95% KM Chebyshev UCL	7.257
134	97.5% KM Chebyshev UCL	8.247	99% KM Chebyshev UCL	10.19
135		1,000		
136		DL/2 St		
137	DL/2 Normal		DL/2 Log-Transformed	
138	Mean in Original Scale	4.828	Mean in Log Scale	1.48
139	SD in Original Scale	1.841	SD in Log Scale	0.522
140	95% t UCL (Assumes normality)	5.969	95% H-Stat UCL	7.642
141	DL/2 is not a recommended met	thod, provid	led for comparisons and historical reasons	
142			Care Town	
143		Suggested l	UCL to Use	
144	95% KM (t) UCL	5.944		
145				
146			ovided to help the user to select the most appropriate 95% UCL.	
147	Recommendations are base	ed upon data	a size, data distribution, and skewness.	
148	These recommendations are based upon the result	s of the simi	ulation studies summarized in Singh, Maichle, and Lee (2006).	
	However, simulations results will not cover all Real Wo	orld data set	s; for additional insight the user may want to consult a statisticia	n.
149				

	A B C	D E	F	G H I J K	L				
1		Gamma UCL S	tatistics for	Data Sets with Non-Detects					
2	11:10:10:11:10:11:10:11:11	1							
3	User Selected Options	ProUCL 5.12/20/2019 11	45.40 AM						
4	Date/Time of Computation From File	Visited and visited and are made	THE STATE OF						
5	From File 20190219 UCL w_ProUCL.xls Full Precision OFF								
6	Confidence Coefficient	95%							
7	Number of Bootstrap Operations	2000							
8	Number of Bootstrap Operations	2000							
9	Lead_0_1								
10	Leau_0_1								
11			General	Statistics					
12	Total	Number of Observations	14	Number of Distinct Observations	14				
13	Total	Number of Detects	13	Number of Non-Detects	1				
14	N	umber of Distinct Detects	13	Number of Distinct Non-Detects	1				
15	, and the second	Minimum Detect	2.8	Minimum Non-Detects	2.5				
16		Maximum Detect	130	Maximum Non-Detect	2.5				
17		Variance Detects	1354	Percent Non-Detects	7.143%				
18	P is a	Mean Detects	42.08	SD Detects	36.79				
19		Median Detects	35	CV Detects	0.874				
20		Skewness Detects	1.134	Kurtosis Detects	1.341				
21		Mean of Logged Detects	3.234	SD of Logged Detects	1.214				
22		Mean of Logged Detects	3.234	SD of Logged Detects	1.214				
23	Kanlan	Major (KM) Statistics usin	a Normal (Critical Values and other Nonparametric UCLs					
24	Napian	KM Mean	39.25	KM Standard Error of Mean	9.891				
25		KM SD	35.56	95% KM (BCA) UCL	56.19				
26		95% KM (t) UCL	56.77	95% KM (Percentile Bootstrap) UCL	55.17				
27		95% KM (z) UCL	55.52	95% KM Bootstrap t UCL	63.67				
28		90% KM Chebyshev UCL	68.92	95% KM Chebyshev UCL	82.36				
29		7.5% KM Chebyshev UCL	101	99% KM Chebyshev UCL	137.7				
30	3,7	.o.a kiii onobyonov ooc	101	3378 Kill Chabyanov 332	107.17				
31		Gamma GOF	Tests on D	etected Observations Only					
32		A-D Test Statistic	0.349	Anderson-Darling GOF Test					
33		5% A-D Critical Value	0.756	Detected data appear Gamma Distributed at 5% Significance	e Level				
34		K-S Test Statistic	0.186	Kolmogorov-Smirnov GOF	9 49 99				
35		5% K-S Critical Value	0.243	Detected data appear Gamma Distributed at 5% Significance	e Level				
36	4	A CARLO DE PARTICO MANGE		istributed at 5% Significance Level	DEPUR				
37		The state of the s		erge attended to a difference of the first of the first	-				
38	[4	Gamma	Statistics o	n Detected Data Only					
39		k hat (MLE)	1.126	k star (bias corrected MLE)	0.918				
40		Theta hat (MLE)	37.36	Theta star (bias corrected MLE)	45.86				
41		nu hat (MLE)	29.28	nu star (bias corrected)	23.86				
43		Mean (detects)	42.08		1				
		YARAZEISI	2000						
44		Gamma ROS	Statistics u	using Imputed Non-Detects					
	GROS may			% NDs with many tied observations at multiple DLs					
46 47				as <1.0, especially when the sample size is small (e.g., <15-20)					
				y yield incorrect values of UCLs and BTVs					
48		DALLE BOOK OF THE PARTY OF THE		en the sample size is small.					
49	For gamma distribu			A SECTION OF THE PROPERTY OF T	age 759 of 792				
50	A STANSON SON ISS	Minimum	0.01	Mean	39.07				
51	F 0. 000	Maximum	130	Median	33				
52		A.V.							

53	A B C D E SD	F 37.09	G H I J K	0.949
54	k hat (MLE)	0.62	k star (bias corrected MLE)	0.535
55	Theta hat (MLE)	63.01	Theta star (bias corrected MLE)	73.05
56	nu hat (MLE)	17.36	nu star (bias corrected)	14.98
-	Adjusted Level of Significance (β)	0.0312	1	
57	Approximate Chi Square Value (14.98, α)	7.245	Adjusted Chi Square Value (14.98, β)	6.543
58	95% Gamma Approximate UCL (use when n>=50)	80.77	95% Gamma Adjusted UCL (use when n<50)	89.43
59 60		25-25-20-1		
61	Estimates of G	amma Paran	meters using KM Estimates	
62	Mean (KM)	39.25	SD (KM)	35.56
63	Variance (KM)	1264	SE of Mean (KM)	9.891
7.00	k hat (KM)	1.219	k star (KM)	1.005
64	nu hat (KM)	34.12	nu star (KM)	28.14
65	theta hat (KM)	32.21	theta star (KM)	39.05
66	80% gamma percentile (KM)	63.14	90% gamma percentile (KM)	90.26
67	95% gamma percentile (KM)	117.4	99% gamma percentile (KM)	180.3
68	55 % ganina percenile (KM)	11/24	55 % gariina percenue (NM)	100.0
69	Comm	a Kanlan Ma	eier (KM) Statistics	
70	Approximate Chi Square Value (28.14, α)	17.04	Adjusted Chi Square Value (28.14, β)	15.9
71	Approximate Cni Square value (28.14, α) 95% Gamma Approximate KM-UCL (use when n>=50)	64.83	95% Gamma Adjusted KM-UCL (use when n<50)	69.47
72	95% Gamma Approximate KM-OCL (use when n>=50)	04.63	95% Gamma Adjusted KW-OCL (use when h<50)	09.47
73		0	Hall of the	
74		Suggested l		
75	Data appear No	rmal, May wa	ant to try Normal Distribution.	
70				
76			ovided to help the user to select the most appropriate 95% UCL.	
76 77	Recommendations are bas	ed upon data	a size, data distribution, and skewness.	
76 77 78	Recommendations are based upon the result	ed upon data	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006).	
76 77 78 79 80	Recommendations are based upon the result	ed upon data	a size, data distribution, and skewness.	in.
76 77 78 79 80	Recommendations are based upon the result However, simulations results will not cover all Real W	ed upon data	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006).	in.
76 77 78 79 80 81	Recommendations are based upon the result	ed upon data	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006).	in.
76 77 78 79 80 81 82	Recommendations are based upon the result However, simulations results will not cover all Real W	ed upon data Its of the simulated orld data sets	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). is; for additional insight the user may want to consult a statisticia	in.
76 77 78 79 80 81 82 83	Recommendations are based upon the result However, simulations results will not cover all Real W	ed upon data	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statisticia	in.
76 77 78 79 80 81 82 83	Recommendations are base These recommendations are based upon the result However, simulations results will not cover all Real W Lead_1_2 Total Number of Observations	eed upon data its of the simulated orld data sets General S	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). is; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations	13
76 77 78 79 80 81 82 83 84	Recommendations are base These recommendations are based upon the result However, simulations results will not cover all Real W Lead_1_2	eed upon data Its of the simularly orld data sets General S	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statisticia	
76 77 78 79 80 81 82 83 84 85	Recommendations are base These recommendations are based upon the result However, simulations results will not cover all Real W Lead_1_2 Total Number of Observations	eed upon data its of the simulated orld data sets General S	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). is; for additional insight the user may want to consult a statisticia Statistics Number of Distinct Observations	13
76 77 78 79 80 81 82 83 84 85 86	Recommendations are based upon the result However, simulations results will not cover all Real W Lead_1_2 Total Number of Observations Number of Detects	General S	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). Its; for additional insight the user may want to consult a statisticial statistics Statistics Number of Distinct Observations Number of Non-Detects	13
76 77 78 79 80 81 82 83 84 85 86 87	Recommendations are based upon the result However, simulations results will not cover all Real W Lead_1_2 Total Number of Observations Number of Detects Number of Distinct Detects	General S	ulation studies summarized in Singh, Maichle, and Lee (2006). is; for additional insight the user may want to consult a statisticial statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	13 1 1
76 77 78 79 80 81 82 83 84 85 86 87 88	Recommendations are based upon the result However, simulations results will not cover all Real W Lead_1_2 Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	General S 13 12 12 3.2	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). Its; for additional insight the user may want to consult a statisticial statistics Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect	13 1 1 2.5
76 77 78 79 80 81 82 83 84 85 86 87 88 89	Recommendations are based upon the result However, simulations results will not cover all Real W Lead_1_2 Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect	General S 13 12 12 3.2 72	Statistics Number of Distinct Observations Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect	13 1 1 2.5 2.5
76 77 78 79 80 81 82 83 84 85 86 87 88 90	Recommendations are based upon the result However, simulations results will not cover all Real W Lead_1_2 Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects	General S 13 12 12 3.2 72 471.9	size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). Is; for additional insight the user may want to consult a statisticial statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects	13 1 1 2.5 2.5 7.692%
76 77 78 80 81 82 83 84 85 86 87 88 89 90 91	Recommendations are based upon the result However, simulations results will not cover all Real W Lead_1_2 Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects	General S 13 12 12 3.2 72 471.9 19.71	Statistics Number of Distinct Observations Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects Percent Non-Detects SD Detects SD Detects	13 1 1 2.5 2.5 7.692% 21.72
76 77 78 80 81 82 83 84 85 86 87 88 89 90 91 92	Recommendations are based upon the result However, simulations results will not cover all Real W Lead_1_2 Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects	General S 13 12 12 3.2 72 471.9 19.71 10.8 1.733	Statistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects Percent Non-Detects SD Detects CV Detects Kurtosis Detects	13 1 1 2.5 2.5 7.692% 21.72 1.102 2.315
76 77 78 80 81 82 83 84 85 86 87 88 90 91 92 93	Recommendations are based upon the result However, simulations results will not cover all Real W Lead_1_2 Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects	General S 13 12 12 3.2 72 471.9 19.71 10.8	Statistics Number of Distinct Non-Detects Number of Distinct Non-Detects Maximum Non-Detect Maximum Non-Detects SD Detects CV Detects	13 1 1 2.5 2.5 7.692% 21.72 1.102
76 77 78 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94	Recommendations are based upon the result However, simulations results will not cover all Real W Lead_1_2 Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects	General S 13 12 12 3.2 72 471.9 19.71 10.8 1.733 2.5	Statistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Maximum Non-Detect Maximum Non-Detects Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects	13 1 1 2.5 2.5 7.692% 21.72 1.102 2.315
76 77 78 79 80 81 82 83 84 85 86 87 88 90 91 92 93 94 95 96	Recommendations are based upon the result However, simulations results will not cover all Real W Lead_1_2 Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Kaplan-Meier (KM) Statistics usin	General S 13 12 12 3.2 72 471.9 19.71 10.8 1.733 2.5	Statistics Number of Distinct Observations Number of Distinct Non-Detects Statistics Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects	13 1 1 2.5 2.5 7.692% 21.72 1.102 2.315 1.004
76 77 78 80 81 82 83 84 85 86 87 88 90 91 92 93 94 95 96	Recommendations are based upon the result However, simulations results will not cover all Real W Lead_1_2 Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Mean of Logged Detects Kaplan-Meier (KM) Statistics usin	General S 13 12 12 3.2 72 471.9 19.71 10.8 1.733 2.5	Statistics Number of Distinct Observations Number of Distinct Non-Detects Minimum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects ritical Values and other Nonparametric UCLs KM Standard Error of Mean	13 1 1 2.5 2.5 7.692% 21.72 1.102 2.315 1.004
766 77 78 79 80 81 82 83 84 85 86 87 90 91 92 93 94 95 96 97 98	Recommendations are based upon the result However, simulations results will not cover all Real W Lead_1_2 Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Kaplan-Meier (KM) Statistics using KM Mean KM SD	General S 13 12 12 3.2 72 471.9 19.71 10.8 1.733 2.5	Statistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects ritical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL	13 1 1 2.5 2.5 7.692% 21.72 1.102 2.315 1.004
766 77 78 79 80 81 82 83 84 85 86 87 90 91 92 93 94 95 96 97 98	Recommendations are based upon the result However, simulations results will not cover all Real W Lead_1_2 Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Mean of Logged Detects Kaplan-Meier (KM) Statistics usin KM Mean KM SD 95% KM (t) UCL	General S 13 12 12 3.2 72 471.9 19.71 10.8 1.733 2.5	Statistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects ritical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	13 1 1 2.5 2.5 7.692% 21.72 1.102 2.315 1.004 5.939 28.83 28.39
76 77 78 80 81 82 83 84 85 86 87 88 90 91 92 93 94 95 96 97 98	These recommendations are based upon the result However, simulations results will not cover all Real W Lead_1_2 Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Kaplan-Meier (KM) Statistics usin KM Mean KM SD 95% KM (t) UCL	General S 13 12 12 12 3.2 72 471.9 19.71 10.8 1.733 2.5 ng Normal Cr 18.38 20.5 28.97 28.15	Statistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects ritical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM Bootstrap t UCL	13 1 1 2.5 2.5 7.692% 21.72 1.102 2.315 1.004 5.939 28.83 28.39 43.02
76 77 78 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100	Recommendations are based upon the result However, simulations results will not cover all Real W Lead_1_2 Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Kaplan-Meier (KM) Statistics usin KM Mean KM SD 95% KM (t) UCL 95% KM (z) UCL	General S 13 12 12 3.2 72 471.9 19.71 10.8 1.733 2.5 18.38 20.5 28.97 28.15 36.2	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). Is; for additional insight the user may want to consult a statisticial statisticial statistics. Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects CV Detects Kurtosis Detects SD of Logged Detects ritical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM Bootstrap t UCL 95% KM Bootstrap t UCL	13 1 1 2.5 2.5 7.692% 21.72 1.102 2.315 1.004 5.939 28.83 28.39 43.02 44.27
76 77 78 80 81 82 83 84 85 86 87 88 89 90 91 92	Recommendations are based upon the result However, simulations results will not cover all Real W Lead_1_2 Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Mean Detects Skewness Detects Skewness Detects Mean of Logged Detects Kaplan-Meier (KM) Statistics usin KM Mean KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL	General S 13 12 12 12 3.2 72 471.9 19.71 10.8 1.733 2.5 ng Normal Cr 18.38 20.5 28.97 28.15	Statistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects ritical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM Bootstrap t UCL	13 1 1 2.5 2.5 7.692% 21.72 1.102 2.315 1.004 5.939 28.83 28.39 43.02 44.27
76 77 78 80 81 82 83 84 85 86 87 90 91 92 93 94 95 96 97 98 99 100 101	These recommendations are based upon the result However, simulations results will not cover all Real W Lead_1_2 Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Mean Detects Skewness Detects Mean of Logged Detects Kaplan-Meier (KM) Statistics usint KM Mean KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL	General S 13 12 12 3.2 72 471.9 19.71 10.8 1.733 2.5 18.38 20.5 28.97 28.15 36.2 55.47	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). Is; for additional insight the user may want to consult a statisticial statisticial statistics. Statistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects CV Detects Kurtosis Detects SD of Logged Detects ritical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM Bootstrap t UCL 95% KM Bootstrap t UCL	13 1 1 2.5 2.5 7.692% 21.72 1.102 2.315 1.004 5.939 28.83 28.39 43.02 44.27

, TT,	Α	В	(C	D	E	F	G	H		1	J	K	1	_ L
105						Test Statistic	0.484				27-2-7-1-1	ling GOF T			
106					5% A-D (Critical Value	0.753	Detecte	d data app	pear C	Gamma Di	stributed at	5% Signi	ficance	e Level
107					K-S	Test Statistic	0.16			Kol	mogorov-	Smirnov GO	OF		
108					5% K-S (Critical Value	0.251	Detecte	d data app	pear C	Gamma Di	stributed at	5% Signi	ficance	e Level
109					Detected	data appear	Gamma Di	stributed at	5% Signif	ficance	e Level				
110															
111						Gamma	Statistics or	Detected D	ata Only						
112						k hat (MLE)	1.178				ks	star (bias co	rrected N	/LE)	0.939
113	+				The	eta hat (MLE)	16.74				Theta s	star (bias co	rected N	ALE)	20.99
114					=0	nu hat (MLE)	28.26					nu star (bi	as correc	ted)	22.53
115						ean (detects)	19.71	*				20000			
- 7 ° 3															
116		Gamma ROS Statistics using Imputed Non-Detects													
117		GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs												-	
118	12	GROS mar				of detects is							2	-20)	
119		GITOO IIIa	y not be			tions, GROS		2 - 2 2 - 2 - 2 -					o.g., <10	20)	
120				FUI							LS allu D I	VS			
121		-	contract in	CV NO. V		This is especi	214 222	o o a promotion of							
122		For gai	mma di	stribute	ed detected	data, BTVs a		be compu	ed using	gamm	a distribut	ion on KM			44.1
123						Minimum	0.01							lean	18.19
124						Maximum	72						Me	dian	9.6
125						SD	21.5							CV	1.182
126						k hat (MLE)	0.645				ks	star (bias co	rrected N	ILE)	0.547
127					The	eta hat (MLE)	28.2				Theta s	star (bias co	rrected N	ILE)	33.23
128						nu hat (MLE)	16.77					nu star (bi	as correc	ted)	14.23
129			Ad	ljusted	Level of Sig	ınificance (β)	0.0301								100
130		App	proxima	ate Chi	Square Val	ue (14.23, a)	6.732			Ad	justed Chi	Square Va	lue (14.23	3, β)	6.011
131	7 7	95% Gamma	a Appro	oximate	e UCL (use	when n>=50)	38.47		95%	Gami	ma Adjuste	ed UCL (use	e when n	<50)	43.08
132															
	7				E	stimates of G	amma Para	meters using	KM Esti	imates	3				
133						Mean (KM)		1					SD (KM)	20.5
134	9				V	ariance (KM)	420.3	SE of Mean (KM)						5.939	
135	-					k hat (KM)	0.804	k star (KM)						0.67	
136						nu hat (KM)	20.91						nu star (17.42
137					th	eta hat (KM)	22.86					th	eta star (27.45
138				80%		rcentile (KM)	30.26				00%	gamma pe		0.324	46.63
139						rcentile (KM)							THE PARTY	W.C. 3	104.2
140				3070	уанна ре	Certule (KIVI)	63.58				99%	gamma pe	, cerrule (i (ivi)	107.2
141						0	a Ve-le 11	alas (IZAN C	otioti						
142			Z.L		0			eier (KM) St	atistics			0	frie 14= 11	0.01	0.440
143	(West	0.778				ue (17.42, α)	8.97		OFC: T			Square Va		. > 2	8.119
144	95%	Gamma Ap	proxim	ate KM		when n>=50)	35.7					M-UCL (use	e when n	<50)	39.44
145					95%	Gamma Adju	sted KM-UC	L (use when	k<=1 and	d n <=	15)				
146															
147							Suggested	UCL to Use							
148	2			9	95% KM Boo	otstrap t UCL	43.02	Adjusted K	M-UCL (u	ise wh	en k<=1 a	nd 15 < n <	50 but k	<=1)	39.44
149															
150		Note: Sugge	estions	regardi	ing the selec	ction of a 95%	UCL are pr	ovided to he	p the use	er to se	elect the m	ost appropr	iate 95%	UCL.	
151	1			R	ecommenda	ations are bas	sed upon da	ta size, data	distributio	on, and	skewnes	S.			
152		These reco	mmend	dations	are based	upon the resu	Its of the sin	ulation stud	es summ	arized	in Singh,	Maichle, an	d Lee (20	J06).	
153	Н	owever, simu	ulations	results	s will not co	ver all Real W	orld data se	ts; for addition	nal insigh	ht the	user may v	want to cons	sult a stat	tisticia	n.
154															ige 761 of 792
	Lead_2_3														
155															
156															

157	A B C D E	F General S	G H I J K Statistics	L
158	Total Number of Observations	9	Number of Distinct Observations	9
159		- 3-11	Number of Missing Observations	3
160	Number of Detects	8	Number of Non-Detects	1
161	Number of Distinct Detects	8	Number of Distinct Non-Detects	1
162	Minimum Detect	3.9	Minimum Non-Detect	2.5
163	Maximum Detect	7.7	Maximum Non-Detect	2.5
164	Variance Detects	1.816	Percent Non-Detects	11.11%
165	Mean Detects	5.275	SD Detects	1.348
166	Median Detects	4.7	CV Detects	0.255
167	Skewness Detects	1.024	Kurtosis Detects	-0.166
168	Mean of Logged Detects	1.637	SD of Logged Detects	0.24
169				
170			e collected using ISM approach, you should use	
171	The state of the s		SM (ITRC, 2012) to compute statistics of interest.	
172			shev UCL to estimate EPC (ITRC, 2012).	
173	Chebyshev UCL can be computed u	sing the Nor	nparametric and All UCL Options of ProUCL 5.1	
174				
175		31.	ritical Values and other Nonparametric UCLs	
176	KM Mean	4.967	KM Standard Error of Mean	0.525
177	KM SD	1.474	95% KM (BCA) UCL	5.833
178	95% KM (t) UCL	5.944	95% KM (Percentile Bootstrap) UCL	5.789
179	95% KM (z) UCL	5.831	95% KM Bootstrap t UCL	6.211
180	90% KM Chebyshev UCL	6.543	95% KM Chebyshev UCL	7.257
181	97.5% KM Chebyshev UCL	8.247	99% KM Chebyshev UCL	10.19
182				
183	Gamma GOF	Tests on De	tected Observations Only	
184	A-D Test Statistic	0.442	Anderson-Darling GOF Test	
185	5% A-D Critical Value	0.716	Detected data appear Gamma Distributed at 5% Significance	ce Level
186	K-S Test Statistic	0.254	Kolmogorov-Smirnov GOF	
187	5% K-S Critical Value	0.294	Detected data appear Gamma Distributed at 5% Significance	ce Level
188	Detected data appear	Gamma Dis	tributed at 5% Significance Level	
189				
190	Gamma S	Statistics on	Detected Data Only	
191	k hat (MLE)	19.18	k star (bias corrected MLE)	12.07
192	Theta hat (MLE)	0.275	Theta star (bias corrected MLE)	0.437
193	nu hat (MLE)	306.8	nu star (bias corrected)	193.1
194	Mean (detects)	5.275		
195	, , , , , , , , ,			
1	Gamma ROS	Statistics us	ing Imputed Non-Detects	
196		2000	NDs with many tied observations at multiple DLs	
197			s <1.0, especially when the sample size is small (e.g., <15-20)	
198	The state of the s		yield incorrect values of UCLs and BTVs	
199			n the sample size is small.	
200		a Caraca Caraca	y be computed using gamma distribution on KM estimates	
201	Minimum	2.378	Mean	4.953
202	Maximum	7.7	Median	4.6
203	SD	1.588	CV	0.321
204	k hat (MLE)	10.38	k star (bias corrected MLE)	6.993
205		D 0.755 F		
206	Theta hat (MLE)	0.477	Theta star (bias corrected MLE)	- 1 - 20-52 F
	nu hat (MLE)	186.8	nu star (bias corrected)	125.9
207	Adjusted Level of Significance (β)	0.0231		

TITE.	Α	В	C		D		E	F	G	H	- 1	- 1	J		K	L
209		App	roximate	Chi Squ	are Val	ue (125	.88, a)	101			Adj	usted Ch	Square Val	ue (12	25.88, β)	96.27
210	(95% Gamm	na Approxi	mate U	CL (use	when r	1>=50)	6.175		95% Gamma Adjusted UCL (use when n<50)				6.477		
211																
212					E	Estimat	es of G	amma Parar	neters using	KM Esti	mate	s				
213						Mea	n (KM)	4.967						5	SD (KM)	1.474
214					1	Variano	e (KM)	2.173					SE	of Me	an (KM)	0.525
215						k ha	at (KM)	11.35						ks	tar (KM)	7.641
216						nu ha	at (KM)	204.3						nu s	tar (KM)	137.5
217					1	theta ha	at (KM)	0.438					t	heta s	tar (KM)	0.65
218				80% ga	mma p	ercentile	e (KM)	6.382				90	% gamma p	ercent	tile (KM)	7.363
219				95% ga	mma p	ercentil	e (KM)	8.243				99	% gamma p	ercent	tile (KM)	10.07
220																
221							Gamm	a Kaplan-Me	eier (KM) Sta	atistics						
222		App	roximate	Chi Squ	are Val	ue (137	.54, a)	111.4			Adj	usted Ch	i Square Val	ue (13	7.54, β)	106.5
223	95%	Gamma A	pproximat	e KM-U	CL (use	when r	1>=50)	6.13		95% Gar	nma	Adjusted	KM-UCL (us	se whe	n n<50)	6.415
224																
225								Suggested	JCL to Use							
226					D	ata app	ear No	rmal, May w	ant to try No	ormal Dis	tribut	ion.				
227																
228	4	Note: Sugg	estions re	garding	the sele	ection o	f a 95%	UCL are pro	vided to hel	p the use	r to s	elect the	most approp	oriate 9	5% UCL	
229	Recommendations are based upon data size, data distribution, and skewness.															
230		These reco	ommenda	tions are	e based	upon ti	he resu	Its of the sim	ulation studi	es summ	arized	d in Singh	, Maichle, a	nd Lee	e (2006).	
231	Ho	wever, sim	ulations re	esults w	ill not co	over all	Real W	orld data set	s; for additio	nal insigh	nt the	user may	want to cor	nsult a	statisticia	an.
232																

\exists	A B C	D E	F	G H I J K	L						
1		Lognormal UCL	statistics to	r Data Sets with Non-Detects							
2	User Selected Options	1									
3	Date/Time of Computation	ProUCL 5.12/20/2019 10:	47:14 AM								
4	From File	20190219 UCL w_ProUC	7123 TO EM.								
5	Full Precision	OFF	L.XIS								
6	Confidence Coefficient 95%										
7	Number of Bootstrap Operations	2000									
8	Number of Bookstrap Operations	2000									
9	Lead_0_1										
10	Leau_0_1										
11			General	Statistics							
12	Total	Number of Observations	14	Number of Distinct Observations	14						
13	1000	Number of Detects	13	Number of Non-Detects	1						
14	N	umber of Distinct Detects	13	Number of Distinct Non-Detects	1						
15		Minimum Detect	2.8	Minimum Non-Detect	2.5						
16		Maximum Detect	130	Maximum Non-Detect	2.5						
17		Variance Detects	1354	Percent Non-Detects	7.143%						
18		Mean Detects	42.08	SD Detects	36.79						
19		Median Detects	35	CV Detects	0.874						
20		Skewness Detects	1.134	Kurtosis Detects	1.341						
21		Mean of Logged Detects	3.234	SD of Logged Detects	1.214						
22		Mean of Logged Detects	3.234	SD of Logged Detects	1.214						
23	1	I canormal GO	F Test on D	etected Observations Only							
24		Shapiro Wilk Test Statistic	0.909	Shapiro Wilk GOF Test							
25		hapiro Wilk Critical Value	0.866	Detected Data appear Lognormal at 5% Significance Le	wel						
26	3/03	Lilliefors Test Statistic	0.247	Lilliefors GOF Test	vei						
27		% Lilliefors Critical Value	0.247	Detected Data Not Lognormal at 5% Significance Lev	ol.						
28		CALLES AND A STATE OF THE PARTY	50.51	Lognormal at 5% Significance Level	51						
29		Detected Data appear A	pproximate	Logiornal at 5% Significance Level							
30	1.	Lognormal POS	Statistics	Using Imputed Non-Detects							
31	1	Mean in Original Scale	39.17	Mean in Log Scale	3.029						
32		SD in Original Scale	36.98	SD in Log Scale	1.396						
33		Geometric d mean	20.67	95% Percentile Bootstrap UCL	54.99						
34	95% t I CL /assume	es normality of ROS data)	56.68	95% BCA Bootstrap UCL	58.34						
35	JON TOOL (assume	95% Bootstrap t UCL	62.02	95% H-UCL (Log ROS)	211.8						
36		JON DOUGHAP LOOK	02.02	30 70 TF-00E (E0g ROS)	211.0						
37	Statio	stics using KM estimates	on Logged In	Data and Assuming Lognormal Distribution	-						
38	Julia	KM Mean (logged)	3.068	KM Geo Mean	21.5						
39		KM SD (logged)	1.272	95% Critical H Value (KM-Log)	3.266						
40	KM Standa	rd Error of Mean (logged)	0.354	95% H-UCL (KM -Log)	153						
41	Tun Outrida			3377. 332 (1.11 259)	1.77						
42			DL/2 S	tatistics							
43	DI /2	Normal	2000	DL/2 Log-Transformed							
44		Mean in Original Scale	39.16	Mean in Log Scale	3.019						
45		SD in Original Scale	36.99	SD in Log Scale	1.417						
46	95% t l	JCL (Assumes normality)	56.67	95% H-Stat UCL	223.8						
47				ded for comparisons and historical reasons	*****						
48	5.55	TO OCCUPATION AND AND AND AND AND AND AND AND AND AN	solet tage.								
49			Sugaested	UCL to Use P	age 764 of 79						
50				vant to try Normal Distribution.	J- 10101						
51	Note: Suggestions regard			ovided to help the user to select the most appropriate 95% UCL.							
52	3										

	A B C D E	F ad upon dat	G H I J K a size, data distribution, and skewness.	L
53			ulation studies summarized in Singh, Maichle, and Lee (2006).	
54			ts; for additional insight the user may want to consult a statistician	10
55	Total of an industrial resource in more service and resource		o, io double in agricult desiring france de located de located	
56	Lead_1_2			
57				
58		General	Statistics	
59	Total Number of Observations	13	Number of Distinct Observations	13
60	Number of Detects	12	Number of Non-Detects	1
61	Number of Distinct Detects	12	Number of Distinct Non-Detects	1
62	Minimum Detect	3.2	Minimum Non-Detect	2.5
63	Maximum Detect	72	Maximum Non-Detect	2.5
64	Variance Detects	471.9	Percent Non-Detects	7.692%
65	Mean Detects	19.71	SD Detects	21.72
66	Median Detects	10.8	CV Detects	1.102
67	Skewness Detects	1.733	Kurtosis Detects	2.315
68	Mean of Logged Detects	2.5	SD of Logged Detects	1.004
69	5. 253305 250000		22 1, 209900 20,0000	viti.
70	Lognormal GOI	Test on D	etected Observations Only	
71	Shapiro Wilk Test Statistic	0.95	Shapiro Wilk GOF Test	
72	5% Shapiro Wilk Critical Value	0.859	Detected Data appear Lognormal at 5% Significance Lev	vel
73	Lilliefors Test Statistic	0.136	Lilliefors GOF Test	
74	5% Lilliefors Critical Value	0.243	Detected Data appear Lognormal at 5% Significance Lev	vel
75	Detected Data ap	30.00	rmal at 5% Significance Level	
76				
77	Lognormal ROS	Statistics U	Jsing Imputed Non-Detects	
78	Mean in Original Scale	18.27	Mean in Log Scale	2.309
79	SD in Original Scale	21.44	SD in Log Scale	1.182
80	Geometric d_mean	10.06	95% Percentile Bootstrap UCL	28.25
81	95% t UCL (assumes normality of ROS data)	28.87	95% BCA Bootstrap UCL	31.22
83	95% Bootstrap t UCL	43.92	95% H-UCL (Log ROS)	59.8
84			200000000000000000000000000000000000000	
85	Statistics using KM estimates of	on Logged [Data and Assuming Lognormal Distribution	
86	KM Mean (logged)	2.378	KM Geo Mean	10.78
87	KM SD (logged)	1.015	95% Critical H Value (KM-Log)	2.875
88	KM Standard Error of Mean (logged)	0.294	95% H-UCL (KM -Log)	41.94
89			Va. 7 .	
90		DL/2 St	tatistics	-
91	DL/2 Normal		DL/2 Log-Transformed	
92	Mean in Original Scale	18.29	Mean in Log Scale	2.325
93	SD in Original Scale	21.42	SD in Log Scale	1.15
94	95% t UCL (Assumes normality)	28.88	95% H-Stat UCL	55.71
95	DL/2 is not a recommended me	thod, provid	ded for comparisons and historical reasons	
96	The state of the s		The state of the s	
97		Suggested	UCL to Use	
98			vant to try Gamma Distribution	
99		The same of the same of	ovided to help the user to select the most appropriate 95% UCL.	
100			a size, data distribution, and skewness.	
101		ACCEPTED AND	ulation studies summarized in Singh, Maichle, and Lee (2006).	
102			ts; for additional insight the user may want to consult a statistic Pa	ge 765 of 79
103	ACTION OF THE PROPERTY OF THE			
VAC 3	Lead_2_3			
104				

	A B C D E	F	G H I J K	L
105		General	Statistics	
106	Total Number of Observations	9	Number of Distinct Observations	9
107	, our names of observations		Number of Missing Observations	3
108	Number of Detects	8	Number of Non-Detects	1
109	Number of Distinct Detects	8	Number of Distinct Non-Detects	1
110	Minimum Detect	3.9	Minimum Non-Detect	2.5
111	Maximum Detect	7.7	Maximum Non-Detect	2.5
112	Variance Detects	1.816	Percent Non-Detects	11.11%
113	Mean Detects	5.275	SD Detects	1.348
114	Median Detects	4.7	CV Detects	0.255
115	Skewness Detects	1.024	Kurtosis Detects	-0.166
116	TOTAL PROTOR STATE AND	1.637	SD of Logged Detects	0.24
117	Mean of Logged Detects	1.037	SD or Logged Detects	0.24
118	Neter Description to the second (a second	V 16 d-4		
119			e collected using ISM approach, you should use	
120			SM (ITRC, 2012) to compute statistics of interest.	
121			shev UCL to estimate EPC (ITRC, 2012).	
122	Chebyshev UCL can be computed us	sing the No	nparametric and All UCL Options of ProUCL 5.1	h = .
123				
124			etected Observations Only	
125	Shapiro Wilk Test Statistic	0.914	Shapiro Wilk GOF Test	
126	5% Shapiro Wilk Critical Value	0.818	Detected Data appear Lognormal at 5% Significance Le	vel
127	Lilliefors Test Statistic	0.237	Lilliefors GOF Test	
128	5% Lilliefors Critical Value	0.283	Detected Data appear Lognormal at 5% Significance Le	vel
129	Detected Data app	ear Logno	rmal at 5% Significance Level	
130				
131	Lognormal ROS	Statistics I	Using Imputed Non-Detects	
132	Mean in Original Scale	5.005	Mean in Log Scale	1.571
133	SD in Original Scale	1.498	SD in Log Scale	0.299
134	Geometric d_mean	4.812	95% Percentile Bootstrap UCL	5.756
135	95% t UCL (assumes normality of ROS data)	5.934	95% BCA Bootstrap UCL	5.856
136	95% Bootstrap t UCL	6.159	95% H-UCL (Log ROS)	6.221
137				
	Statistics using KM estimates o	n Logged I	Data and Assuming Lognormal Distribution	
138	KM Mean (logged)	1.557	KM Geo Mean	4.743
139	KM SD (logged)	0.31	95% Critical H Value (KM-Log)	2.022
140	KM Standard Error of Mean (logged)	0.11	95% H-UCL (KM -Log)	6.212
141	(*35**)			- 0 - 0 - 1
142		DI /2 S	tatistics	
143	DL/2 Normal	DLIZO	DL/2 Log-Transformed	
144	Mean in Original Scale	4.828	Mean in Log Scale	1.48
145	SD in Original Scale	1.841	SD in Log Scale	0.522
146	95% t UCL (Assumes normality)	5.969	95% H-Stat UCL	7.642
147		20,000		7.042
148	DLIZ IS NOT a recommended met	niou, provid	ded for comparisons and historical reasons	
149		0	HIOL to Hea	
150			UCL to Use	
151			vant to try Normal Distribution.	
152			ovided to help the user to select the most appropriate 95% UCL.	
153		4 00	a size, data distribution, and skewness.	1 -
154			rulation studies summarized in Singh, Maichle, and Lee (2006)Pa	
155	However, simulations results will not cover all Real Wo	orld data set	ts; for additional insight the user may want to consult a statisticia	n.
156				

APPENDIX B - COMMUNITY WORKFORCE AND TRAINING AGREEMENT

EXHIBIT A

SUMMARY OF COMMUNITY WORKFORCE AND TRAINING AGREEMENT REQUIREMENTS

(Federally-Funded Projects)

Introduction

On August 21, 2018, the City of Sacramento approved a Community Workforce and Training Agreement (CWTA) with the Sacramento-Sierra Building and Construction Trades Council, AFL-CIO (Trades Council), and the unions represented by the Trades Council, to support the City's efforts to increase employment opportunities for workers who are local area residents, and to provide construction career training and employment opportunities for the City's at-risk youth, military veterans, women and other disadvantaged residents through local apprenticeship and pre-apprentice programs. A complete copy of the CWTA is attached hereto. This summary is provided for convenience only. All contractors must read and understand the full CWTA prior to submitting a bid.

Application

The CWTA applies to all City public works construction contracts for projects where either the engineer's estimate of the total construction cost of the project or the actual cumulative bid amounts submitted by the contractor or contractors awarded the contract exceeds One Million Dollars (\$1,000,000). The CWTA applies to all "Covered Work" which is further defined in section 2.2 of the CWTA. Exclusions from Covered Work are further defined in section 2.3 of the CWTA.

Prior to award of this contract, the contractor must agree to be bound by each and every provision of the Agreement (except as noted below), and must execute the Agreement to be Bound in the form attached to the CWTA as Addendum A. In addition, any time the awarded contractor enters into a subcontract with any subcontractor for Covered Work, the contractor must provide a copy of the CWTA to the subcontractor and require the subcontractor to execute the Agreement to be Bound in the form attached to the CWTA as Addendum A. All Addendum A's must be executed by subcontractors and provided to the City prior to the subcontractor performing any work.

Due to the state and/or federal funds applied to this project, Article IX of the CWTA, detailing the local hire requirements, is not applicable to this project.

Requirements

In addition to the requirement to execute the Agreement to be Bound in the form attached to the CWTA as Addendum A, Contractor and its employees must comply with the following requirements:

Utilize Union Hiring Halls. Pursuant to Article VIII of the CWTA, Contractor and its subcontractors performing construction work, in filing craft job requirements, must utilize and be bound by the registration facilities and referral systems established or authorized by the local unions that are signatories to the CWTA (except that Contractors shall have the right to select and hire directly all supervisors above general foreman, without going through the local union).

Pay Union Dues and Fees. All employees performing Covered Work (that is not otherwise excluded) must, as a condition of employment, pay the applicable periodic working dues and associated fees required or union membership to the applicable local union that is a signatory to the CWTA, as required in Article VII of the CWTA. Please Note: The CWTA has been amended, and no longer requires all employees performing Covered Work to pay working dues, fees required, or union membership to the applicable local union that is a signatory to the CWTA, unless the employee elects to join the union.

1

Page 768 of 792

Hold Pre-Job and Periodic Meetings. Pursuant to Article V, Contractor must convene a pre-job conference with representatives of all involved contractors (including subcontractors) and the unions at least 21 days prior to the commencement of work. For long-term projects with multiple phases, conferences can be held with subcontractors for later phases 21 days prior to the commencement of the applicable phase.

The Project Manager and the contractors must be prepared to discuss in detail: (i) the scope of work for each Contractor; (ii) craft assignments; (iii) estimated number of craft workers required to perform the work; (iv) transportation arrangements; (v) estimated start and completion dates of the work; (vi) planned use of pre-fabricated materials; and (vii) any specialized or technical work exempted from the CWTA. The meeting shall be held at a location mutually agreeable to the parties.

Contractor must also hold joint labor/management meetings between the City, the Project Manager, the contractor(s), and the unions periodically to promote harmonious labor relations and ensure adequate communications.

Helmets to Hardhats. Contractor must participate in the Helmets to Hardhats program, as outlined in Article X of the CWTA.

Comply with Master Agreement Terms on Wages, Hours, Benefits, and other Terms and Conditions of Employment. As set forth in Article XI, Contractor must pay applicable contributions to the established vacation, pension and other deferred compensation plan, apprenticeship, worker protection and assistance, and health benefit funds for each hour worked on the project in the amounts designated in the Master Agreements of the appropriate local unions. By signing the Agreement to be Bound, Contractor also adopts and agrees to be bound by the written terms of established Trust Agreements for these benefit funds.

The wages, hours, and other terms and conditions of employment on the project shall be governed by the applicable union's Master Agreement, as required in Article XI of the CWTA.

Only Just Cause Dismissal and/or Discipline. All disputes involving discipline and/or the discharge of employees working on the project must be resolved through the grievance and arbitration provision contained in the applicable Master Agreement. As set forth in Article XIII of the CWTA, no employee working on the project shall be disciplined or dismissed without just cause.

Arbitrate Disputes. Any disputes relating to the interpretation or application of the CWTA, excluding work stoppages, strikes, and lockouts, must be resolved through the grievance arbitration procedures in Article XIV of the CWTA. At the time a grievance is submitted, the union may request that the City withhold and retain an amount from what is due and owing to the contractor against whom the grievance is filed. The amount shall be retained by the City until the grievance is withdrawn, settled, or otherwise resolved.

Any jurisdictional disputes on the project amongst the unions and/or the contractor shall be settled according to the plan established by the Building and Construction Trades Department. Its decisions shall be final, binding, and conclusive.

Drug-Free Workplace. Contractors agree to use the Substance Abuse Program contained in each applicable union's Master Agreement, except as it may conflict with the City's Drug-Free Workplace Policy. In the event of a conflict, the City's policy shall control.

2 Page 769 of 792

-

¹ Work can only be exempted with notice and agreement of Trades Council (see Section 2.3 of CWTA, as amended).

COMMUNITY WORKFORCE AND TRAINING AGREEMENT CITY OF SACRAMENTO

INTRODUCTION/FINDINGS

The purpose of this Community Workforce and Training Agreement is to promote efficiency of construction operations in the construction of major projects set forth in the City of Sacramento's Capital Improvement Plan and other public works projects that are subject to this Agreement, thereby promoting the public interest in assuring the timely and costeffective completion of such projects, and supporting the efforts of the City to increase employment opportunities for workers who are local area residents, and to provide construction career training and employment opportunities for the City's at-risk youth, military veterans, women and other disadvantaged residents through local apprenticeship and preapprentice programs.

- The City adopts a five-year Capital Improvement Plan that identifies the public projects necessary to maintain and improve the physical properties of the City, including construction or repair of City buildings and facilities, such as streets, roads, storm drains, traffic signals, parks, and community centers.
- B The City undertakes and anticipates undertaking projects identified in the Capital Improvement Plan and other City public works projects that involve significant construction costs in excess of the threshold set forth in this Agreement.
- The City Council has determined that the successful and cost-effective completion of these Capital Improvement Plan projects and other major City public works projects is of the utmost importance to the City and its taxpayers and the residents it serves.
- The City has determined that applying a uniform workforce agreement to the D. Capital Improvement Plan and other public works construction projects that exceed the threshold set forth in this Agreement during the term of this Agreement will provide efficiencies for the City and its contractors.
- Community workforce and training agreements and similar workforce agreements have been used successfully to achieve the goals and objectives set forth in this Agreement by other public agencies and private entities on major construction projects in the region, including on the Golden 1 Center project.
- Large numbers of workers of various skills will be required in the F. performance of the construction work, including those workers represented by the Local Unions signatory to this Agreement and employed by contractors and subcontractors who are signatory to this Agreement.

1

G. The use of skilled labor on construction work increases the safety of construction operations and the quality of completed work.

- H. Major projects subject to this Agreement will require multiple contractors and bargaining units to be on the job site at the same time over an extended period of time, increasing the potential for work disruption in the absence of an overriding commitment to maintain continuity of work.
- I. The interests of the general public and taxpayers, the City, the Contractor(s) and the Unions would be best served if the construction work proceeded in an orderly manner without disruption and delay.
- J. The Contractor(s) and the Unions desire to mutually establish and stabilize wages, hours and working conditions for the workers employed on the construction projects subject to this Agreement in order to promote a satisfactory, continuous and harmonious relationship among the parties to this Agreement.
- K. This Agreement is not intended to replace, interfere with, abrogate, diminish or modify existing local or national collective bargaining agreements in effect during the duration of the Project, insofar as a legally binding agreement exists between the Contractor(s) and the affected Union(s), except to the extent that the provisions of this Agreement are inconsistent with said collective bargaining agreements, in which event, the provisions of this Agreement shall prevail.
- L. The contracts for the construction of the Project will be awarded in accordance with the applicable provisions of the Sacramento City Code, the California State Public Contract Code and other applicable state, local and federal laws.
- M. The City has the right and is legally obligated, subject to certain exceptions, to select the lowest responsive and responsible bidder for the award of construction contracts on the Project or to reject all bids.
- N. The City places high priority upon the development of comprehensive programs for the recruitment, training and employment of local area residents and military veterans, and also recognizes the ability of local apprenticeship programs to provide meaningful and sustainable careers in the building and construction industry.
- O. The parties signatory to this Agreement pledge their full good faith and trust to work towards mutually satisfactory completion of the Capital Improvement Plan projects and other major City public works projects subject to this Agreement.

NOW, THEREFORE, IT IS AGREED BETWEEN AND AMONG THE PARTIES HERETO, AS FOLLOWS:

ARTICLE I DEFINITIONS

- 1.1 "Agreement" means this Community Workforce and Training Agreement.
- 1.2 "Agreement to be Bound" means the agreement (attached hereto and incorporated herein as Addendum A) required to be executed by any Contractor(s) working on the Project as a precondition to performing Covered Work on the Project.
 - 1.3 "City" means the City of Sacramento.
- 1.4 "<u>Completion</u>" means the point at which there is Final Acceptance by the City, which occurs when the City determines that the entire project is complete in accordance with the City's Standard Specifications. The date of completion of the entire Project shall be specified in any Notice of Completion filed pursuant to Civil Code Section 3093.
- 1.5 "Construction Contract" means all public works contracts approved by the City for a Project, including design-bid, design-build, lease-leaseback or other contracts under which Covered Work is performed.
- 1.6 "Contractor "or "Contractor(s)" means any person, firm, corporation, or other entity, or any combination thereof, including joint ventures, and any successor or assigns of such persons or entities, that has entered into a contract with the City, or with any other person or entity contracting for work on the Project on behalf of the City (whether by design-bid, design-build, lease-leaseback or other means), with respect to the construction of any part of the Project under contract terms and conditions approved by the City, and any of its contractors or subcontractors of any tier.
- 1.7 "Master Agreement" or "Schedule A" means the Master Collective Bargaining Agreement of each craft union signatory hereto, copies of which shall be provided to the City.
- 1.8 "Project" means any City public works project where any bid solicitation for any Construction Contract related to the Project is issued on or after January 1, 2019, where either the engineer's estimate of the total construction cost of the project or the actual cumulative bid amounts submitted by the contractor or contractors awarded the Construction Contracts for the Project exceeds One Million Dollars (\$1,000,000). All Construction Contracts required to complete an integrated City construction project shall be considered in determining the threshold value of the Project.
 - 1.9 "Project Manager" means the person or business entity designated by, or under

¹ This Agreement will apply to the following City Construction Contracts, regardless of the date of bidding: Sacramento Convention Center, Community Center Theater, Natomas Aquatic Center, McKinley Vault, Third Street Sewer, and Fire Station 14. This Agreement will not apply to any remaining Construction Contracts, even if bid after January 1, 2019, that are part of the City's Accelerated Water Meter Program approved by the City Council prior to the execution of this Agreement (commonly referred to as "Meters Matter").

contract with the City to oversee all phases of construction on the Project.

- 1.10 "<u>Trades Council</u>" means the Sacramento-Sierra Building and Construction Trades Council, AFL-CIO.
- 1.11 "<u>Union" or "Unions</u>" means the labor organizations that are signatory to this Agreement, acting on their own behalf and on behalf of their respective affiliates and member organizations whose names are subscribed hereto and who have through their officers executed this Agreement ("Local Unions"). The Trades Council and the Unions are collectively referred to herein as the "Unions."

ARTICLE II SCOPE OF AGREEMENT

- 2.1 <u>Parties</u>. This Agreement applies and is limited to all Contractor(s), performing Construction Contracts on the Project, the City, the Trades Council and the Local Unions that are signatory to this Agreement.
- 2.2 <u>Applicability</u>. This Agreement governs all Construction Contracts awarded on the City Projects subject to this Agreement. For purposes of this Agreement, a Construction Contract is considered completed as described in Section 1.4, except when the City's authorized representative directs a Contractor to engage in repairs, warranty work, or modifications as required under the original Construction Contract with the City.
- 2.2.1 <u>Covered Work</u>. This Agreement covers, without limitation, all on-site site preparation, surveying, construction, alteration, demolition, installation, improvement, painting or repair of buildings, structures and other works, and related activities for the Project that is within the craft jurisdiction of one of the Unions and which is directly or indirectly part of the Project, including, without limitation to the following examples, geotechnical and exploratory drilling, temporary HVAC, landscaping and temporary fencing, pipelines (including those in linear corridors built to serve the Project), pumps, pump stations, and modular furniture installation. On-site work includes work done solely for the Project in temporary yards, dedicated sites, or areas adjacent to the Project, and at any on-site or off-site batch plant constructed solely to supply materials to the Project. This scope of work includes all soils and materials testing and inspection where such testing and inspection is a classification in which a prevailing wage determination has been published.
- 2.2.2 This Agreement applies to any start-up, calibration, commissioning, performance testing, repair, maintenance or operational revisions to systems and/or subsystems for the Project that are part of the original Construction Contract, including when performed after Completion, unless it is performed by City employees.
- 2.2.3 This Agreement covers all on-site fabrication work over which the City, Contractor(s) or their subcontractors possess the right of control (including work done for the Project in any temporary yard or area established for the Project). Additionally, this Agreement covers any off-site fabrication work necessary for the Project that is traditionally

performed by any of the Unions and that is covered by a Master Agreement or local addenda to a National Agreement of the applicable Union(s) in effect as of the execution date of this Agreement.

- 2.2.4 The furnishing of supplies, equipment or materials that are stockpiled for later use are not covered by this Agreement. However, construction trucking work, such as the delivery of ready-mix, asphalt, aggregate, sand, or other fill or material that is incorporated into the construction process as well as the off-hauling of debris and excess fill, material and/or mud, shall be covered by the terms and conditions of this Agreement to the fullest extent allowed by law. Contractor(s), including brokers, of persons providing construction trucking work shall provide certified payroll records to the City within ten (10) calendar days of written request or as required by the Construction Contract.
- 2.2.5 Work covered by this Agreement within the following craft jurisdictions shall be performed under the terms of their National Agreements as follows: the National Transient Lodge (NTL) Articles of Agreement, the National Stack/Chimney Agreement, the National Cooling Tower Agreement, and the National Agreement of Elevator Constructors, and any instrument calibration work and loop checking shall be performed under the terms of the UA/IBEW Joint National Agreement for Instrument and Control Technicians, with the exception that Articles IV, XIV and XV of this Agreement shall apply to such work.

2.3 Exclusions from Covered Work

- 2.3.1 The Agreement is limited to construction work on a Project and is not intended to and shall not affect or govern the award of construction contracts by the City which are not a part of a Project.
- 2.3.2 The Agreement does not apply to a Contractor(s)' non-construction craft employees, including but not limited to executives, managerial employees, contract and/or construction managers, engineering employees and supervisors above the level of General Foreman (except those covered by existing Master Agreements), staff engineers or other professional engineers, administrative, management, office, professional, and clerical employees.
 - 2.3.3 The Agreement does not apply to work by employees of the City.
- 2.3.4 The Agreement does not apply to off-site maintenance of leased equipment and on-site supervision of such work.
- 2.3.5 The Agreement does not apply to work performed by employees of an Original Equipment Manufacturer ("OEM") or vendor on the OEM's or vendor's equipment if required by the warranty agreement between the OEM or vendor and the City in order to maintain the warranty or guarantee on such equipment, and provided that the warranty agreement is the OEM's or vendor's usual and customary warranty agreement for such equipment.
- 2.3.6 The Agreement does not apply to specialized or technical work requiring specialized training, unique skills, and/or a level of specific technical experience that the Unions do not possess, including the use of specialty equipment and tools. Before any Contractor subcontracts any work subject to this exception, such Contractor shall give the

Trades Council at least three (3) days advance notice. Any specialized or technical work subject to this Section anticipated by the Project Manager or any Contractor shall be discussed at the Pre-Job Conference held pursuant to Article V. Any disputes regarding the application of this Section shall be resolved by the parties through the expedited arbitration process in Section 4.2 to determine whether any violation of this section has occurred.

- 2.3.7 The Agreement does not apply to laboratory work for specialty testing or inspections and all testing or inspections not covered by the Master Agreement of one of the signatory Unions.
- 2.3.8 The Agreement does not apply to any work performed on, near, or leading to the Project and undertaken by state, county, or other governmental bodies or their contractors, or public utilities or their contractors.
- 2.3.9 The Agreement does not apply to any work related to the creation or installation of any Art Work by an individual Artist as part of the City's Art in Public Places requirement. For purposes of this Agreement, "Art Work" is a unique, one-of-a-kind decorative element to be incorporated into the building or site, the design, illustration, and detailing of which can only be fully completed in the field and can only be performed by the individual Artist. An "Artist" is an individual that is engaged by the City or the Primary Employer to create and install Art Work. The Artist shall perform all final adjustments, finishing touches, and final painting of any Art Work.
- 2.3.10 The Agreement does not apply to work on any housing or residential component of a Project that is otherwise covered by this Agreement.
- 2.4 Award and Enforcement of Construction Contracts. Notwithstanding any other provision of this Agreement, the City has the absolute right to select any qualified bidder for the award of Construction Contracts and to enforce all provisions of its Construction Contracts. The bidder need only be willing, ready and able to execute the Addendum A Agreement to be Bound and comply with this Agreement. This Agreement shall be included in all invitations to bid or solicitations for proposals from contractors or subcontractors for work on the Project that are issued on and after the effective date of this Agreement.

ARTICLE III EFFECT OF AGREEMENT

- 3.1 By executing the Agreement, the Unions and the City agree to be bound by the terms and conditions of the Agreement.
- 3.2 By accepting the award of a Construction Contract for the Project, whether as contractor or subcontractor, the Contractor(s) agrees to be bound by each and every provision of the Agreement, and agrees that it will evidence its acceptance prior to the commencement of work by executing the Agreement to be Bound in the form attached hereto as Addendum A.
- 3.3 At the time that any Contractor(s) enters into a subcontract with any subcontractor providing for the performance of a Construction Contract, the Contractor(s) shall provide a copy of this Agreement to such subcontractor, and shall require their subcontractor,

as a condition to accepting an award of a construction subcontract, to agree in writing to be bound by each and every provision of this Agreement prior to the commencement of work by executing the Agreement to be Bound in the form attached hereto as Addendum A.

- 3.4 This Agreement is only binding on the signatories and their successors and assigns, and does not apply to the parents, affiliates, subsidiaries, or other ventures of any such party. Each Contractor and subcontractor is alone liable and responsible for its own individual acts and conduct and for any breach or alleged breach of this Agreement, except as otherwise provided by law or the applicable Schedule A. Any dispute between the Union(s) and the Contractor(s) respecting compliance with the terms of the Agreement, shall not affect the rights, liabilities, obligations and duties between the signatory Union(s) and other Contractor(s) party to this Agreement. Any liability by a signatory Union to this Agreement shall be several and not joint. Any alleged breach of this Agreement by a signatory Union does not affect the rights, liabilities, obligations and duties between the signatory Contractor(s) and the other Union(s) party to this Agreement.
- 3.5 The provisions of this Agreement, including the Master Agreements of the Local Unions having jurisdiction over the work on the Project, incorporated herein by reference, shall apply to the work covered by this Agreement, notwithstanding the provisions of any other local, area and/or national agreements which may conflict with or differ from the terms of this Agreement. Where a subject covered by the provisions of this Agreement is also covered by a Master Agreement, the provisions of this Agreement shall prevail. Where a subject is covered by the provisions of a Master Agreement and is not covered by this Agreement, the provisions of the Master Agreement shall prevail.

ARTICLE IV WORK STOPPAGES, STRIKES, SYMPATHY STRIKES AND LOCKOUTS

- 4.1 The Unions, City and Contractor(s) covered by the Agreement agree that for the duration of the Project:
- 4.1.1 There shall be no strikes, sympathy strikes, work stoppages, picketing, handbilling or otherwise advising the public that a labor dispute exists, or slowdowns of any kind, for any reason, by the Unions or employees employed on the Project, at the job site of the Project or at any other facility of the City because of a dispute on the Project. Disputes arising between the Unions and Contractor(s) on other City projects are not governed by the terms of the Agreement or this Article.
- 4.1.2 There shall be no lockout of any kind by a Contractor of workers employed on the Project.
- 4.1.3 If a Master Agreement expires before the Contractor completes the performance of work under the Construction Contract and the Union or Contractor gives notice of demands for a new or modified Master Agreement, the Union agrees that it will not strike on work covered under this Agreement and the Union and the Contractor agree that the expired Master Agreement shall continue in full force and effect for work covered under this Agreement until a new or modified Master Agreement is reached.

- 4.1.4 In the case of nonpayment of wages or trust fund contributions on the Project, the Union shall give the City and the Contractor(s) three (3) business days' notice when nonpayment of trust fund contributions has occurred and one (1) business days' notice when nonpayment of wages has occurred or when paychecks being tendered to a financial institution normally recognized to honor such paychecks will not honor such paycheck as a result of insufficient funds, of the intent to withhold labor from the Contractor(s) or their subcontractor's workforce, during which time the Contractor shall have the opportunity to correct the default. In this instance, a Union's withholding of labor (but not picketing) from a Contractor who has failed to pay its fringe benefit contributions or failed to meet its weekly payroll shall not be considered a violation of this Article.
- 4.1.5 If the City contends that any Union has violated this Article, it will notify in writing (including email) the Senior Executive of the Trades Council and the Senior Executive of the Union, setting forth the facts alleged to violate the Article, prior to instituting the expedited arbitration procedure set forth below. The Senior Executive of the Trades Council will immediately use his/her best efforts to cause the cessation of any violation of this Article. The leadership of the Union will immediately inform the membership of their obligations under this Article. A Union complying with this obligation shall not be held responsible for unauthorized acts of employees it represents.
- 4.2 <u>Expedited Arbitration</u>. Any party to this Agreement shall institute the following procedure, prior to initiating any other action at law or equity, when a breach of this Article is alleged to have occurred:
- 4.2.1 A party invoking this procedure shall notify Barry Winograd, as the permanent arbitrator, or John Kagel, as the alternate arbitrator under this procedure. In the event that the permanent arbitrator is unavailable at any time, the alternate will be contacted. If neither is available, then a selection shall be made from the list of arbitrators as set forth in Section 14.2. Notice to the arbitrator shall be by the most expeditious means available, with notices by facsimile, email or telephone to the City and the party alleged to be in violation, and to the Trades Council and involved Local Union if a Union is alleged to be in violation.
- 4.2.2 Upon receipt of said notice, the City will contact the designated arbitrator named above or his alternate who will attempt to convene a hearing within twenty-four (24) hours if it is contended that the violation still exists.
- 4.2.3 The arbitrator shall notify the parties by facsimile, email or telephone of the place and time for the hearing. The hearing shall be completed in one session, which, with appropriate recesses at the arbitrator's discretion, shall not exceed twenty-four (24) hours unless otherwise agreed upon by all parties. A failure of any party to attend such hearings shall not delay the hearing of evidence or the issuance of an award by the arbitrator.
- 4.2.4 The sole issue at the hearing shall be whether or not a violation of Article IV, Section 4.1 of the Agreement has occurred. The arbitrator shall have no authority to consider any matter of justification, explanation or mitigation of such violation or to award damages, which issue is reserved for court proceedings, if any. The award shall be issued in writing within three (3) hours after the close of the hearing, and may be issued without a written opinion. If any party desires a written opinion, one shall be issued within fifteen (15) calendar days, but its issuance shall not delay compliance with or enforcement of the award.

The arbitrator may order cessation of the violation of this Article and other appropriate relief and such award shall be served on all parties by hand or registered mail upon issuance.

- 4.2.5 Such award may be enforced by any Court of competent jurisdiction upon the filing of this Agreement and all other relevant documents referred to above. Written notice of the filing of such enforcement proceedings shall be given to the other party. In the proceeding to obtain a temporary order enforcing the arbitrator's award as issued under Section 4.2.4 of this Article, all parties waive the right to a hearing and agree that such proceedings may be ex parte. Such agreement does not waive any party's right to participate in a hearing for a final order or enforcement. The Court's order or orders enforcing the arbitrator's award shall be served on all parties by hand or delivered by certified mail.
- 4.2.6 Any rights created by statute or law governing arbitration proceedings inconsistent with the above procedure, or which interfere with compliance, are waived by the parties.
- 4.2.7 The fees and expenses of the arbitrator shall be divided equally between the party instituting the arbitration proceedings and the party alleged to be in breach of its obligation under this Article.

ARTICLE V JOINT LABOR/MANAGEMENT MEETINGS AND PRE-JOB CONFERENCES

- 5.1 <u>Joint Labor/Management Meetings</u>. During the period of any work performed under this Agreement, joint Labor/Management meetings between the City, the Project Manager, the Contractor(s) and the Unions shall be held on a periodic basis to be determined by the parties. The purpose of these meetings is to promote harmonious labor/management relations, ensure adequate communications and advance the proficiency and efficiency of the craft workers and contractors performing work at the Project. These meetings will include a discussion of safety, craft resource requirements, scheduling and productivity of work performed at the Project.
- 5.2 Pre-Job Conferences. The Project Manager shall convene and conduct a Pre-Job Conference with representatives of all involved Contractor(s) and the Unions at least twenty-one (21) calendar days prior to the commencement of any Covered Work on the Project and prior to the commencement of any Covered Work on each subsequently awarded Construction Contract or phase of the Project. The conference shall be attended by a representative of each participating Contractor and each affected Union. The Trades Council and City may attend at their discretion. The Project Manager and the Contractor(s) shall be prepared to discuss in detail: (i) the scope of work for each Contractor; (ii) craft assignments; (iii) estimated number of craft workers required to perform the work; (iv) transportation arrangements; (v) estimated start and completion dates of the work; and (vi) planned use of pre-fabricated materials. The meeting shall be held at a location mutually agreeable to the parties.

ARTICLE VI NO DISCRIMINATION

6.1 The Contractor(s) and Unions agree to comply with all anti-discrimination provisions of federal, state and local law, to protect employees and applicants for employment, on the Project.

ARTICLE VII UNION SECURITY

- 7.1 The Contractor(s) recognize the Union(s) as the sole bargaining representative of all craft employees working within the scope of this Agreement.
- 7.2 All employees performing work covered by this Agreement shall, as a condition of employment on or before the eighth (8th) day of consecutive or cumulative employment on the Project, be responsible for the payment of the applicable periodic working dues and any associated fees uniformly required for union membership in the Local Union that is signatory to this Agreement for the duration of his or her employment on the Project. Nothing in this Agreement is intended to prevent any non-union employees from joining the Local Union.
- 7.3 Authorized representatives of the Unions shall have reasonable access to the Project whenever work covered by this Agreement is being, has been, or will be performed on the Project. All authorized representatives of the Union(s) must comply with the required check-in procedure prior to visiting the work area.

ARTICLE VIII REFERRAL

- 8.1 Contractor(s) performing construction work on the Project described in the Agreement shall, in filling craft job requirements, utilize and be bound by the registration facilities and referral systems established or authorized by the Local Unions ("Job Referral System"). Such Job Referral System shall be operated in a non-discriminatory manner and in full compliance with all federal, state, and local laws and regulations, including those which require equal employment opportunities and non-discrimination. The Contractor(s) shall have the right to reject any applicant referred by the Union(s) in accordance with this Article VIII.
- 8.2 The Contractor(s) shall have the unqualified right to select and hire directly all supervisors above general foreman it considers necessary and desirable, without such persons being referred by the Union(s) consistent with Section 2.3.2 of this Agreement.
- 8.3 In the event that referral facilities maintained by the Union(s) are unable to fill the requisition of a Contractor(s) for employees within a forty-eight (48) hour period (Saturdays, Sundays and Holidays excluded) after such requisition is made by the Contractor(s), the Contractor(s) shall be free to obtain work persons from any source. A Contractor who hires any personnel to perform covered work on the Project pursuant to this Section shall immediately provide the appropriate Union with the name and address of such employee(s) and shall immediately refer such employee(s) to the appropriate Union to satisfy the requirements of Article VII of this Agreement.

ARTICLE IX LOCAL HIRE, APPRENTICESHIP AND WORKFORCE DEVELOPMENT

- 9.1 <u>Local Hire</u>. It is in the interest of the parties to this Agreement to facilitate employment of City of Sacramento and Sacramento County residents and to develop increased numbers of local skilled construction workers to meet the requirements of the regional construction economy. The "Local Area" is defined as the City of Sacramento, Sacramento County, and the additional nine counties in section 9.1.3 below. It is the objective of the parties that not less than fifty percent (50%) of the combined journey-level and apprentice hours worked on the Project, on a craft by craft basis, be worked by residents of the Local Area. The Unions agree that residents of the Local Area shall be first referred for Project Work, including journey-level workers and apprentices covered by this Agreement, in the following order of priority:
 - 9.1.1 Priority 1: Residents of the City of Sacramento.
 - 9.1.2 <u>Priority 2</u>: Residents of Sacramento County outside of the City of Sacramento.
 - 9.1.3 Priority 3: Residents of the Counties of Yolo, Placer, El Dorado, Amador, Sutter, Yuba, Nevada, Sierra and San Joaquin.
- 9.2 The Unions will exert their utmost efforts to recruit sufficient numbers of skilled craft persons and apprentices to fulfill the requirements of the contractor and to meet the Local Area resident hiring objectives of this Agreement, and will provide, at the time of referral, information to the City and its representatives regarding the zip code where each skilled craft persons and apprentices referred for Project Work resides. The Local Area residents referred by the Unions must possess the requisite skills and qualifications required for the position to be filled and such referrals shall be in accordance with law and consistent with the Local Union's hiring hall rules and procedures.
- 9.3 The parties also recognize and support the City's commitment to provide opportunities for participation of City of Sacramento businesses on Projects covered by this Agreement. In furtherance of this commitment and the local hire objectives of this Agreement, the parties agree that such City of Sacramento contractors and subcontractors awarded work on the Project may request by name, and the Local Union will honor, referral of such Contractor's "core" employees who have applied to the Local Union for Project work, and who demonstrate the following qualifications:
 - (1) possess any license required by state or federal law for the Project work to be performed;
 - (2) have worked a total of at least two thousand (2,000) hours in the construction craft during the prior two (2) years;

- (3) were on the Contractor's active payroll for at least ninety (90) out of the one hundred and twenty (120) calendar days prior to the contract award;
- (4) have the ability to perform safely the basic functions of the applicable trade; and
- (5) are City of Sacramento residents.

For purposes of this Section 9.3, a City of Sacramento contractor or subcontractor is any construction contractor that maintains its principal place of business in the City of Sacramento. A City of Sacramento resident is any individual who six (6) months prior to the award of the Construction Contract to the Contractor can certify through a utility bill or other similar means acceptable to the parties that the individual resides within the municipal boundaries of the City of Sacramento.

- 9.4 The Union will refer to such Contractor one journeyman employee from the hiring hall out-of-work list for the affected trade or craft, and will then refer one of such Contractor's "core" employees as a journeyman and shall repeat the process, one and one, until such Contractor's crew requirements are met or until such Contractor has hired four (4) "core" employees, whichever occurs first. Thereafter, all additional employees in the affected trade or craft shall be hired exclusively from the hiring hall out-of-work list(s). For the duration of the Contractor's work, the ratio shall be maintained and when the Contractor's workforce is reduced, employees shall be reduced in the same ratio of core employees to hiring hall referrals as was applied in the initial hiring.
- 9.5 The work hours performed by any out-of-state residents shall not be included in the total work hours on the Project in calculating the percentage of total work hours worked by Local Area residents.

9.6 Apprenticeship and Workforce Development.

- 9.6.1 Recognizing the need to develop adequate numbers of competent workers in the construction industry, the Contractor(s) shall employ apprentices of a California State- approved Joint Apprenticeship Training Program in the respective crafts to perform such work as is within their capabilities and which is customarily performed by the craft in which they are indentured. The apprentice ratios will comply with the applicable provisions of the California Labor Code and Prevailing Wage Rate Determination. Consistent with the Master Agreements and state law, there shall be no restriction on the utilization of apprentices in performing the work of their craft provided they are properly supervised.
- 9.6.2 It is an objective of the parties that not less than twenty percent (20%) of all apprentice hours worked on the Project, on a craft by craft basis, shall be worked by "Priority Apprentices." Priority Apprentices shall reside in one of the economically disadvantaged zip codes listed in section 9.6.2.1 and meet one additional Priority Apprentice criteria in section 9.6.2.2 below. Contractors shall reach this goal through utilization of the normal hiring hall procedures. The Unions are committed to working with the Contractors to achieve these goals. All apprentices referred to Contractors under this Agreement shall be enrolled in State of California approved Joint Apprentice Training Programs.

- 9.6.2.1 To qualify as a Priority Apprentice, an apprentice must reside in one of the following economically disadvantaged zip codes: 95652, 95660, 95811, 95814, 95815, 95817, 95820, 95823, 95824, 95832, 95838.
- 9.6.2.2 In addition to residing in one of the economically disadvantaged zip codes, to qualify as a Priority Apprentice, an apprentice must satisfy one of the eligibility criteria maintained and enforced by the Sacramento Employment and Training Agency ("SETA"), including criteria for: veterans; prior offenders; public assistance recipients; foster youth; homeless; unemployed individuals; women interested in joining the trades; and/or other criteria as may be agreed to by the City and the Trades Council. Determination of an individual's satisfaction of the Priority Apprentice criteria shall be made in a manner consistent with historic eligibility determination policies and practices. The individual must also meet eligibility criteria and application requirements for applicable Union apprenticeship programs.
- 9.6.2.3 In the event that an insufficient number of apprentices have been identified to meet the Priority Apprentice work hour objectives of this Agreement from the economically disadvantaged zip code specified in Section 9.6.2.1 after a good faith effort to identify eligible residents, the Priority Apprentice goals may be satisfied by identifying apprentices that satisfy one of the SETA criteria described in Section 9.6.2.2 and who also are residents of the Local Area in the order of priority set forth in Section 9.1.
- 9.6.3 The Trades Council and Unions will determine the admission and training of Priority Apprentices placed into applicable apprenticeship programs. Upon request from a Contractor, the Unions shall timely dispatch available apprentices who satisfy specified Priority Apprentice criteria, the requirements of a specific job and such other applicable bona fide qualifications.
- 9.7 The Contractor and Unions shall make good faith efforts to reach the local hire, and Priority Apprentice goals set forth in Section 9 through the utilization of normal hiring hall and apprentice procedures and, when appropriate, the identification of potentially qualified apprentices through community-based organizations working in collaboration with the apprenticeship programs. The Unions are committed to working with the Contractor(s) and community-based organizations to achieve these goals. At least annually, the Unions and the City will conduct a Community Career Fair to provide at-risk youth, veterans, and others an opportunity to learn about each craft and the process for entering their apprenticeship programs.
- 9.7.1 To assess compliance with the local hire and Priority Apprentice goals of the CWTA, Contractor shall provide monthly workforce reports at the regular Joint Labor/Management meetings required by the CWTA. The workforce reports shall include information regarding the number of: (i) journey-level workers that are Local Area Residents; (ii) Apprentices that are Local Area Residents and satisfy the other Priority Apprentice criteria, including a breakdown of apprentices that reside within the targeted zip codes. The Contractor(s) and the Unions agree to furnish all information required to prepare these reports.

- 9.7.2 In the event that the workforce reports indicate that the local hire and apprenticeship goals of the CWTA are not being met, the Project Manager or his or her designee shall explore with the Contractors and subcontractors and the Unions additional actions and measures that may be taken to ensure compliance with such goals.
- 9.7.3 The Contractor(s) will describe the requirements, performance and enforcement mechanisms of this CWTA including this Apprenticeship Program in each subcontract. Any Contractor or subcontractor who fails to employ without just cause Apprentice(s) dispatched by an Apprenticeship Program thereby jeopardizing its opportunity to achieve the apprenticeship goals described above shall, upon receipt of written notice from the Project Manager or his or her designee, be given thirty (30) days to promptly employ such number of dispatched Apprentices as may be required to meet the stated apprentice goals available under that certain Subcontractor's subcontract. In the event of a second written notice of failure to employ without just cause dispatched Apprentices from the Unions to a Contractor or subcontractor, the Project Manager or his or her designee shall take such actions as it deems appropriate to the circumstances and necessary to achieve the purposes of the CWTA, bid documents, and the subcontractor's subcontract.
- 9.8 <u>Student Internship Opportunities</u>. All Contractors awarded Construction Contracts to perform Covered Work on the Project shall make a good faith effort to provide paid internship opportunities to eligible students. Such opportunities may include engineering, design, and/or construction management work associated with the implementation and administration of the Project.
- 9.9 <u>Good Faith Efforts</u>. A Contractor must take the following good faith steps to demonstrate that it has made every effort to reach the Local Hire, Priority Apprentice, and Student Internship goals of this Agreement. The Contractor shall attend scheduled Pre-Job meetings held under this Agreement and shall submit written workforce projections and projected work hours on a craft-by-craft basis.
- 9.9.1 Within seven (7) calendar days after Notice to Proceed, the Contractor shall meet with the Unions and the City to present its plan for reaching the Local Hire, Priority Apprentice and Student Internship goals.
- 9.9.2 The Contractor or subcontractor shall notify the Project Manager by U.S. Mail or electronic mail if a Union hiring hall cannot, upon request by the Contractor or subcontractor, dispatch Local Area residents and/or Priority Apprentices to the Project. It shall be the responsibility of the Contractor to retain all evidence of such good faith efforts.

9.10 Enforcement, Compliance and Reporting.

9.10.1 Contractors will be required to submit Certified Weekly Payrolls to the City along with monthly workforce utilization reports, described in section 9.7.1 above, documenting the Contractor's compliance with the requirements described in this Article. At a minimum, the monthly reports must include: 1) data on Local Area residents, Priority Apprentice, and Student Internship work hour utilization on the Project; and 2) documentation showing any requests made to the Union dispatchers for Local Area residents and Priority Apprentices and the Union's response to the request.

9.10.2 The City staff shall monitor the operation of the Local Hire, Priority Apprentice and Student Internship programs and shall consider allegations of non-compliance with the goals stated in this Article. If there is a determination by the City that a Contractor has not complied with the goals or demonstrated good faith efforts to do so, the City and the Contractor shall meet and confer in order to identify necessary actions to resolve the issue and ensure a good faith effort to achieve the objectives of this Article.

ARTICLE X HELMETS TO HARDHATS

- 10.1 The Contractor(s) and the Unions recognize a desire to facilitate the entry into the building and construction trades of veterans and members of the National Guard and Reserves who are interested in careers in the building and construction industry. The Contractor(s) and Unions agree to utilize the services of the Center for Military Recruitment, Assessment and Veterans Employment (hereinafter "Center), a joint Labor-Management Cooperation Trust Fund, established under the authority of Section 6(b) of the Labor-Management Cooperation Act of 1978, 29 U.S.C. Section 175(a), and Section 302(c)(9) of the Labor-Management Relations Act, 29 U.S.C. Section 186(c)(9), and a charitable tax exempt organization under Section 501(c)(3) of the Internal Revenue Code, and the Center's "Helmets to Hardhats" program to serve as a resource for preliminary orientation, assessment of construction aptitude, referral to apprenticeship programs or hiring halls, counseling and mentoring, support network, employment opportunities and other needs as identified by the parties.
- 10.2 The Unions and Contractor(s) agree to coordinate with the Center to participate in an integrated database of veterans and members of the National Guard and Reserves interested in working on the Project and of apprenticeship and employment opportunities for this Project. To the extent permitted by law, the Unions will give credit to such veterans for bona fide, provable past experience.

ARTICLE XI WAGES AND BENEFITS

- 11.1 All Contractor(s) agree to pay contributions to the established vacation, pension and other form of deferred compensation plan, apprenticeship, worker protection and assistance, and health benefit funds established by the applicable Master Agreement for each hour worked on the Project in the amounts designated in the Master Agreements of the appropriate Local Unions.
- 11.2 By signing this Agreement, the Contractor(s) adopts and agrees to be bound by the written terms of the legally established Trust Agreements, as described in Section 11.1, which may from time to time be amended, specifying the detailed basis on which payments are to be made into, and benefits paid out of, such Trust Funds. The Contractor(s) authorize the parties to such local trust agreements to appoint trustees and successor trustees to administer the trust funds and hereby ratify and accept the trustees so appointed as if made by the Contractor(s). The Contractor(s) agrees to execute a separate Subscription Agreement(s) for a Trust Fund(s) when required by such Trust Fund(s).

- 11.3 Wages, Hours, Terms and Conditions of Employment. The wages, hours and other terms and conditions of employment on the Project shall be governed by the Master Agreement of the respective crafts to the extent such Master Agreement is not inconsistent with this Agreement. All employees covered by this Agreement shall be classified and paid in accordance with the classification and wage scales contained in the appropriate local agreements which have been negotiated by the historically recognized bargaining entity and in compliance with the applicable general prevailing wage determination made by the Director of Industrial Relations pursuant to the California Labor Code.
- 11.4 During the period of construction on this Project, the Contractor(s) agrees to recognize and put into effect such increases in wages and recognized fringe benefits as shall be negotiated between the various Unions and the historically recognized local bargaining entity on the effective date as set forth in the applicable agreement. The Unions shall notify the Contractor(s) in writing of the specific increases in wages and recognized fringe benefits and the date on which they become effective.
- 11.5 <u>Holidays</u>. Holidays shall be in compliance with the applicable Schedule A agreement.

ARTICLE XII COMPLIANCE

12.1 It shall be the responsibility of the Contractor(s) and Unions to investigate and monitor compliance with the provisions of the Agreement contained in Article XI. Nothing in this Agreement shall be construed to interfere with or supersede the usual and customary legal remedies available to the Unions and/or employee benefit Trust Funds to collect delinquent Trust Fund contributions from Employers on the Project. The City shall monitor and enforce the Contractor(s)' compliance with this Agreement and with the prevailing wage requirements of the State to the extent required by law.

ARTICLE XIII EMPLOYEE GRIEVANCE PROCEDURE

13.1 All disputes involving discipline and/or discharge of employees working on the Project shall be resolved through the grievance and arbitration provision contained in the Master Agreement for the craft of the affected employee. No employee working on the Project shall be disciplined or dismissed without just cause.

ARTICLE XIV GENERAL GRIEVANCE PROCEDURE

14.1 <u>Project Labor Disputes</u>. All disputes involving the application or interpretation of the Master Agreement to which a signatory Contractor and a signatory Union are parties shall be resolved pursuant to the resolution procedures of that Master Agreement. All disputes relating to the interpretation or application of this Agreement, excluding work stoppages, strikes, sympathy strikes, and lockouts subject to Article IV, shall be subject to resolution by the grievance arbitration procedures set forth in this Article XIV.

- 14.2 No grievance shall be recognized unless the grieving party (Local Union or District Council on its own behalf, or on behalf of an employee whom it represents, or a Contractor on its own behalf) provides notice in writing to the party with whom it has a dispute within five (5) business days after becoming aware of the dispute but in no event more than thirty (30) business days after it reasonably should have become aware of the event giving rise to the dispute. Time limits may be extended by mutual written agreement of the parties.
- Step 1: Within five (5) business days after the receipt of the written notice of the grievance, the Business Representative of the involved Local Union or District Council, or his/her designee, or the representative of the employee, and the representative of the involved Contractor shall confer and attempt to resolve the grievance.
- Step 2: In the event that the representatives are unable to resolve the dispute within the five (5) business days of the Step 1 meeting, within five (5) business days thereafter, the alleged grievance may be referred in writing by either involved party to the Business Manager(s) of the affected Union(s) involved and the Manager of Labor Relations of the Contractor(s) or the Manager's designated representative, for discussion and resolution. Regardless of which party has initiated the grievance proceeding, prior to a Step 2 meeting, the Union(s) shall notify its International Union representative(s), which shall advise both parties if it intends on participating in a Step 2 meeting. The Project Manager and the Trades Council shall have the right to participate in any efforts to resolve the dispute at Step 2.
- Step 3: If the grievance is not settled in Step 2 within five (5) business days, within five (5) business days thereafter, either party may request the dispute be submitted to an Arbitrator for final and binding arbitration. The request for arbitration must be in writing with a copy to Project Manager. Should the parties be unable to mutually agree on the selection of an Arbitrator, selection for that given arbitration shall be made by seeking a list of seven (7) labor arbitrators with construction experience from the Federal Mediation and Conciliation Service and alternately striking names from the list of names on the list until the parties agree on an Arbitrator or until one name remains. The first party to strike a name from the list shall alternate between the party bringing forth the grievance and the party defending the grievance. The Project Manager shall keep a record of the sequence and shall notify the parties to the grievance as to which party has the right to strike a name first. The decision of the Arbitrator shall be final and binding on all parties. The Arbitrator shall have no authority to change, amend, add to or detract from any of the provisions of the Agreement. The expense of the Arbitrator shall be borne equally by both parties. The Arbitrator shall arrange for a hearing on the earliest available date from the date of his/her selection. A decision shall be given to the parties within five (5) calendar days after completion of the hearing unless such time is extended by mutual agreement. A written opinion may be requested by a party from the presiding arbitrator.

The time limits specified in any step of the Grievance Procedure set forth in Section 14.2 may be extended by mutual agreement of the parties. However, failure to process a grievance, or failure to respond in writing within the time limits provided above, without an agreed upon extension of time, shall be deemed a waiver of such grievance without prejudice, or without precedent to the processing of and/or resolution of like or similar grievances or disputes.

In order to encourage the resolution of disputes and grievances at Steps 1 and 2 of this Grievance Procedure, the parties agree that such settlements shall not be precedent setting.

14.3 <u>Retention</u>. At the time a grievance is submitted under this Agreement or any Master Agreement, the Union(s) may request that the City withhold and retain an amount from what is due and owing to the Contractor(s) against whom the grievance is filed sufficient to cover the damages alleged in the grievance should the Union(s) prevail. The amount shall be retained by the City until such time as the underlying grievance giving rise to the retention is withdrawn, settled, or otherwise resolved, and the retained amount shall be paid to whomever the parties to the grievance shall decide, or to whomever an Arbitrator shall so order.

ARTICLE XV WORK ASSIGNMENTS AND JURISDICTIONAL DISPUTES

- 15.1 The assignment of Covered Work will be solely the responsibility of the Contractor(s) performing the work involved; and such work assignments will be in accordance with the Plan for the Settlement of the Jurisdictional Disputes in the Construction Industry (the "Plan") or any successor Plan.
- 15.2 All jurisdictional disputes on this Project between or among the building and construction trades Unions and the Contractor(s) subject to this Agreement, shall be settled and adjusted according to the present Plan established by the Building and Construction Trades Department or any other plan or method of procedure that may be adopted in the future by the Building and Construction Trades Department. Decisions rendered shall be final, binding and conclusive on the Employers and Contractor(s) subject to this Agreement.
- 15.3 If a dispute arising under this Article involves the Northern California Carpenters Regional Council or any of its subordinate bodies, an Arbitrator shall be chosen by the procedures specified in Article V, Section 5, of the Plan from a list composed of John Kagel, Thomas Angelo, Robert Hirsch, and Thomas Pagan, and the Arbitrator's hearing on the dispute shall be held at the offices of the California State Building and Construction Trades Council in Sacramento, California within fourteen (14) days of the selection of the Arbitrator. All other procedures shall be as specified in the Plan.
- 15.4 All jurisdictional disputes shall be resolved without the occurrence of any strike, work stoppage, or slow-down of any nature and the Contractor(s)' assignment shall be adhered to until the dispute is resolved. Individual employees violating this section shall be subject to immediate discharge. Each Contractor will conduct a pre-job conference with the Unions in accordance with Section 5.2 of this Agreement.

ARTICLE XVI MANAGEMENT RIGHTS

16.1 The City and Contractor(s) shall retain full and exclusive authority for the management of their operations, including the right to direct their workforce in their sole discretion. Except as provided by Section 2.2.3 and by the lawful manning provisions in the

applicable Master Agreement, no rules, customs or practices shall be permitted or observed which limit or restrict production, or limit or restrict the working efforts of employees.

ARTICLE XVII DRUG & ALCOHOL TESTING

- 17.1 The use, sale, transfer, purchase and/or possession of a controlled substance, alcohol and/or firearms at any time during the work day is prohibited.
- 17.2 The parties agree to recognize and use the Substance Abuse Program contained in each applicable Local Union's Master Agreement, except as it may conflict with the City's Drug-Free Workplace Policy. In the event of a conflict, the City's policy shall prevail.

ARTICLE XVIII SAVINGS CLAUSE

- 18.1 The parties agree that in the event any article, provision, clause, sentence or word of the Agreement is determined to be illegal or void as being in contravention of any applicable law, by a court of competent jurisdiction, the remainder of the Agreement shall remain in full force and effect. The parties further agree that if any article, provision, clause, sentence or word of the Agreement is determined to be illegal or void by a court of competent jurisdiction, the parties shall substitute, by mutual agreement, in its place and stead, an article, provision, clause, sentence or word which will meet the objections to its validity and which will be in accordance with the intent and purpose of the article, provision, clause, sentence or word in question.
- 18.2 If a court of competent jurisdiction determines that all or part of the Agreement is invalid and/or enjoins the City from complying with all or part of its provisions and the City accordingly determines that the Agreement will not be required as part of an award to a Contractor(s), the Unions will no longer be bound by the provisions of Article IV.
- 18.3 The parties agree that should any Project subject to this Agreement receive a non-de minimis allocation of federal funds for construction of the Project, and such federal funding allocation, whether or not allocated through the state, includes a condition to receipt of the federal funds that prohibits the City from applying any local hiring preference in any contracts for construction of the Project, or that prohibits application of any other provision or provisions of this Agreement, the local resident hiring provisions contained in Article IX, or any other provision or provisions of this Agreement prohibited by such condition to receipt of federal funds for Project construction, shall not be applied to the Project, but all other terms and conditions of this Agreement shall remain in full force and effect.

ARTICLE XIX AMENDMENT/COUNTERPARTS/AUTHORITY

19.1 Any substantive modification of any provision or addendum to this Agreement must be reduced to writing and signed by the City, Trades Council and Unions to be effective.

- 19.2 This Agreement may be executed in counterparts, such that original signatures may appear on separate pages, and when bound together all necessary signatures shall constitute an original. Facsimile or scanned signature pages transmitted to other parties to this Agreement shall be deemed equivalent to original signatures.
- 19.3 Each of the persons signing this Agreement represents and warrants that such person has been duly authorized to sign this Agreement on behalf of the party indicated and each of the parties by signing this Agreement warrants and represents that such party is legally authorized and entitled to enter into this Agreement.

ARTICLE XX TERM

20.1 This Agreement shall remain in full force and effect for a period of five (5) years from the date it becomes effective. Every six to twelve months, the City and the Trades Council agree to meet and confer regarding the experience with Projects covered by the Agreement, and to determine whether any changes in the administration or implementation of the Agreement would be beneficial or would improve operation of the Agreement. Prior to the expiration of this Agreement, the parties may agree to extend the term of this Agreement or enter into a new agreement incorporating any substantive changes based on the status of and experience with Projects covered by the Agreement.

Assistant City Manager Francesca Lee Halbakken for City Manager Howard Chan

Approved as to form:

Stranger V. Gase

City Attorney

Date: 1157018

Date: 1157018

SACRAMENTO BUILDING AND CONSTRUCTION TRADES COUNCIL,

AFL-CIO COUNCIL

| Specific | Date: 11 | 0a | 2018 |
| Name: | Director |
| Title:

3753-026j

UNIONS Asbestos Workers Local #16 Boilermakers Local #549 ciment Masons Lecal #400 Plasterers & Cepient Masons Local #300 Northern California Carpenters Regional Council on behalf of itself and its affiliated Local Unions UA of Journeymen & Apprentices of the Plumbing & Pipe Fitting Ind. Local #355 District Council #16 International Plumbers & Pipefitters Local #447 Union of Painters & Allied Trades Elevator Constructors Local #8 International Brotherhood of Electricians et Metal Workers Local #104 Local #340 Sprinkler Fitters Local #669

Ashestos: Lead and Mold Laborers Local #67

Addendum A

COMMUNITY WORKFORCE AND TRAINING AGREEMENT CITY OF SACRAMENTO

AGREEMENT TO BE BOUND

The undersigned, as a Contractor or Subcontractor, including construction material trucking company/entity, (CONTRACTOR) on the City of Sacramento Project, (hereinafter PROJECT), for and in consideration of the award to it of a contract to perform work on said PROJECT, and in further consideration of the mutual promises made in this Community Workforce and Training Agreement (hereinafter AGREEMENT), a copy of which was received and is acknowledged, hereby:

- (1) Accepts and agrees to be bound by the terms and conditions of the AGREEMENT for this Project, together with any and all amendments and supplements now existing or which are later made thereto.
- (2) The CONTRACTOR agrees to be bound by the legally established local trust agreements designated in the applicable Master Agreement as described in Article XI of this AGREEMENT.
- (3) The CONTRACTOR authorizes the parties to such local trust agreements to appoint trustees and successor trustees to administer the trust funds and hereby ratifies and accepts the trustees so appointed as if made by the CONTRACTOR.
- (4) Certifies that it has no commitments or agreements which would preclude its full and complete compliance with the terms and conditions of said AGREEMENT.
- (5) Agrees to secure from any CONTRACTOR(S) (as defined in said AGREEMENT) which is or becomes a subcontractor (of any tier) to it, a duly executed Agreement to be Bound in form identical to this document.
- (6) This Agreement to be Bound constitutes a subscription agreement to the extent of its terms. However, the undersigned agrees to execute a separate Subscription Agreement(s) or contributing employer agreement for Trust Funds when such Trust Fund(s) requires such document(s).

Date:	Name of Contractor
	(Name of Contractor Representative)
	(Authorized Officer & Title)
	CSLB # or Motor Carrier Permit