BAMES & MOORE

DECEMBER 1993 JOB NO. 00173-076-044

SAC87.18

N

E DAMES & MOORE

8801 FOLSOM BOULEVARD, SUITE 200, SACRAMENTO, CALIFORNIA 95826 (916) 387-8800 FAX: (916) 387-0802

December 7, 1993

Mr. Tony Landis Region 1, Department of Toxic Substances Control California Environmental Protection Agency 10151 Croydon Way, Suite 3 Sacramento, CA 95827

Attention: Mr. James L. Tjosvold, P.E. Sacramento Responsible Party Unit Site Mitigation Program

> Transmittal OU S-5 Additional Subsurface Investigation Report Union Pacific Railroad Yard Sacramento, California D&M Project No. 00173-076-044

Dear Mr. Tjosvold:

Union Pacific Railroad Company (UPRR) has requested that Dames & Moore transmit the above-referenced report. The report presents the results of subsurface investigation around former boring ATB-11 in the northeastern portion of Operable Unit S-5 (the active yard).

If you have any questions, please contact Jim Brake at (916) 387-730.

Re:

Sincerely,

DAMES & MOORE

Jim Brake, R.G.

Project Manager

John Fawcett, P.E. Lead Consultant

Enclosure

cc: Distribution List

SAC88.16

OFFICES WORLDWIDE

DISTRIBUTION LIST:

UNION PACIFIC RAILROAD YARD SACRAMENTO, CALIFORNIA PROJECT NUMBER 00173-076-044

Mr. Glenn Thomas Manager Environmental Site Remediation Environmental Management Group Union Pacific Railroad Company 1416 Dodge Street, Room 930 Omaha, NE 68179-0930

Mr. Rick Eades Director Environmental Site Remediation Environmental Management Group Union Pacific Railroad Company 1416 Dodge Street, Room 930 Omaha, NE 68179-0930

Mr. Tony Landis, Chief Site Mitigation Region 1, Department of Toxic Substances Control California Environmental Protection Agency 10151 Croyden Way, Suite 3 Sacramento, CA 95827-2106 Attn: Mr. James Tjosvold

Mr. Jose Salcedo, Project Manager Region 1 Department of Toxic Substances Control California Environmental Protection Agency 10151 Croyden Way, Suite 3 Sacramento, CA 95827-2106

Ms. Wendy L. Cohen, P.E. Senior Water Resources Control Engineer Regional Water Quality Control Board 3443 Routier Road Sacramento, CA 95827-3098

Mr. Joe Serna, Jr., Mayor City of Sacramento 915 I Street, Room 205 Sacramento, CA 95814 Attn: Sally Hencken, Aide

UP-072/UPSAC.076

DISTRIBUTION LIST:

UNION PACIFIC RAILROAD YARD SACRAMENTO, CALIFORNIA PROJECT NUMBER 00173-076-044

Mr. Tom Finley, Division Manager Department of Public Works City of Sacramento 927 Tenth Street, Room 200 Sacramento, CA 95814

Mr. Robert Lee Deputy Director Public Works City of Sacramento 915 I Street, Room 207 Sacramento, CA 95814

Mr. Bob Thomas Deputy City Manager City of Sacramento 915 I Street, Room 101 Sacramento, CA 95814

Ms. Genevieve Shiroma Sierra Curtis Neighborhood Association 2791 24th Street Sacramento, CA 95818

Sacramento City College Library Library Reference Desk 3835 Freeport Boulevard Sacramento, CA 95822

City Clerk's Office City of Sacramento City Hall, Room 304 915 I Street Sacramento, CA 95814

Belle Cooledge Library 5600 South Land Park Drive Sacramento, CA 95822

Ms. Marty Rozelle, Principal Dames & Moore 7500 Dreamy Draw Drive, Suite 145 Phoenix, AZ 85020

UP-072/UPSAC.076

DISTRIBUTION LIST:

UNION PACIFIC RAILROAD YARD SACRAMENTO, CALIFORNIA PROJECT NUMBER 00173-076-044

Mr. Jeff Asay Assistant General Solicitor Union Pacific Railroad Company 5500 Ferguson Drive, Suite J Los Angeles, CA 90022

Ms. Patricia Mendoza City of Sacramento Department of Planning & Development 1231 I Street, Room 300 Sacramento, CA 95814

Mr. Daniel P. Costa, Esq. Diepenbrock & Costa 455 University Avenue, Suite 300 Sacramento, CA 95825

UP-072/UPSAC.076

TABLE OF CONTENTS

PAGE **SECTION** 1.0 <u>INTRODUCTION</u> 1 3.2 IN-SITU GROUNDWATER SAMPLE COLLECTION AND ANALYSIS 5 4.0 RESULTS 4.1 SUBSURFACE OBSERVATIONS 7 4.2.1 Soil Sample Analysis Results 8

SAC87.18

LIST OF TABLES, FIGURES, AND APPENDICES

LIST OF TABLES

TABLE 1 -SUMMARY OF SOIL AND IN-SITU GROUNDWATER ANALYSIS RESULTSTABLE 2 -SUMMARY OF CHEMICAL ANALYSIS RESULTS

LIST OF FIGURES

FIGURE 1 -SITE VICINITY MAPFIGURE 2 -SOIL BORING LOCATIONSFIGURE 3 -CROSS SECTION LOCATION MAPFIGURE 4 -CROSS SECTION A-A'FIGURE 5 -CROSS SECTION B-B'

LIST OF APPENDICES

APPENDIX A -	FIELD METHODS
APPENDIX B -	BORING LOGS
APPENDIX C -	SOIL AND IN-SITU GROUNDWATER SAMPLE ANALYSIS RESULTS
	TABLES
APPENDIX D -	LABORATORY ANALYTICAL REPORTS

SAC87.18

1.0 INTRODUCTION

Dames & Moore is pleased to present this Additional Subsurface Investigation Report for Operable Unit (OU) S-5 at the Union Pacific Railroad (UPRR) Yard, Sacramento, California (the site). OU S-5 is one of five operable units of soil designated for the site-based on-site geography, potential future land uses, and contaminant types. OU S-5 encompasses the currently active portion of the railyard.

This report presents a summary of sampling activities and results of soil and shallow groundwater investigation completed in OU S-5 in October 1993. Results of previous investigations in OU S-5 and the site in general are provided in the Remedial Investigation Supplement (Dames & Moore, 1992), Remedial Investigation/Feasibility Study (RI/FS) Report (Dames & Moore, 1991a), and the Addendum RI/FS Report (Dames & Moore, 1991b).

The California Environmental Protection Agency, Department of Toxic Substances Control (DTSC) directed UPRR to conduct the additional subsurface investigation in OU S-5, based on results of previous soil investigation performed in OU S-5 in December 1991. Results of that investigation are presented in Section 2.0 of this report. The purpose of this investigation was to define the lateral and vertical extent of petroleum hydrocarbon impacts in soil around the boring in which impacted soil was found in the previous investigation of OU S-5. Additionally, this investigation was intended to assess whether shallow groundwater had been impacted by petroleum hydrocarbons in this area. The area of focus in this investigation is located in the northern part of OU S-5, approximately 1,600 feet south of the intersection of the main UPRR line and Freeport Boulevard (Figure 1).

This investigation was conducted in accordance with the DTSC-approved Work Plan -Additional Investigation Active (Western) Portion of the UPRR Yard Work Plan, Sacramento, California (Dames & Moore, 1993).

Section 2.0 presents site background information, including location, site description, historical information on the active yard, and a summary of previous remedial investigations and

SAC87.18

R

.

2.0 SITE BACKGROUND

This section presents a description of the active yard and a summary of previous active yard remedial investigations and results.

2.1 SITE LOCATION AND DESCRIPTION

The UPRR Sacramento railyard is located in south Sacramento in Section 13 of Township 8 North, Range 4 East and in Section 18 of Township 8 North, Range 5 East, Mt. Diablo Base Meridian (Figure 1). The active yard encompasses an area of approximately 31 acres on the west side of the railyard.

The active portion of the railyard is bounded by Sacramento City College, commercial property and residential property to the west, residential property to the north, commercial property to the south and the inactive yard to the east. The closest roads to the active yard include Freeport Boulevard about one-fourth mile west, Portola Way approximately 30 yards north and Sutterville Road along the southern site boundary.

The active yard is currently used primarily as a switching yard. Nine spur rail lines used for assembling and dissembling trains are located along the eastern side of the active yard. Yard activities are coordinated out of the yard office located in the southern active yard portion. Additionally, UPRR's main north-south rail line and passing rail line are located along the western side of the active yard.

2.2 HISTORICAL INFORMATION

A review of aerial photographs for the years 1937, 1953, 1961, 1968, 1972, 1976, 1981 and 1986 was conducted during the RI to evaluate historical changes to the active yard. None of the aerial photos indicate the presence of facilities in the northern portion of the active yard that was the focus of this investigation. Previously existing active yard structures were apparently located only in the central and southern portions of the yard.

2.3 PREVIOUS ACTIVE YARD INVESTIGATION

A soil investigation was previously performed in OU S-5 under the direction of the DTSC. The investigation included collection of forty-three surface soil/gravel samples, and completion of twenty shallow soil borings. Surface soil/gravel samples were analyzed for metals. Selected soil

SAC87.18

samples collected from borings were analyzed for metals, chlorinated volatile organic compounds (VOCs), diesel-range total petroleum hydrocarbons (TPH-d), and one sample was analyzed for asbestos.

In general, shallow soils observed in previous active yard investigations were comprised of track ballast and heterogeneous fill materials underlain by native soils. Track ballast occurs dominantly in the upper 1 to 2 feet of surface materials. Fill materials extend to a depth of approximately 2 to 5 feet below ground surface, except in the northern portion of the active yard where fill material deepens to approximately 6 to 11 feet below ground surface. Beneath the fill layer, native soils consisting of sandy silts, clayey silts and silty clays were encountered to a maximum observed depth of 30 feet bgs. Groundwater was observed at a depth of approximately 25 feet bgs in each boring location.

Relatively low levels of TPH-d were reported for soil samples collected from borings in the southeast portion of OU S-5. The vertical extent of the TPH-d impacts in this portion of OU S-5 was limited to the upper five feet of material (primarily fill). However, soil samples collected from ATB-11 in the northeast portion of OU S-5 (Figure 2) had reported TPH-d concentrations of up to 8,300 milligrams per kilogram (mg/kg). TPH-d-impacted soil was encountered up to 28.5 feet below ground surface (bgs) in ATB-11.

4

3.0 SCOPE OF INVESTIGATIONS

This section presents a summary of the additional subsurface investigation activities conducted to supplement previous investigation in OU S-5. The subsurface investigation included drilling of soil borings, soil sample collection and analysis (Section 3.1), and in-situ groundwater sample collection and analysis (Section 3.2).

3.1 SOIL INVESTIGATION

The soil investigation was conducted to assess the lateral and vertical extent of TPH-d impacts to soil in the vicinity of ATB-11 in the northern portion of OU S-5. The soil investigation consisted of drilling and sampling seven borings (ATB-21 through ATB-27) from the ground surface to just below the water table at approximately 25 feet bgs. Figure 2 shows the locations of soil borings and their positions relative to ATB-11. Each boring was sampled using a combination of continuous coring and drive sampling at five foot intervals. Continuous coring provided a complete record of the subsurface materials penetrated by drilling while drive samples provided relatively undisturbed soil samples suitable for chemical analysis. Drilling and sample collection procedures are described in Appendix A. Logs of borings are presented in Appendix B.

A total of twenty-three soil samples (three to five per boring) were submitted to D&M Laboratories of Petaluma, California for TPH-d analysis by EPA Method 8015M. Eight of the twenty-three samples submitted were also analyzed for polynuclear aromatic hydrocarbons (PAHs) by EPA Method 8310 because of the potential presence of PAHs in association with combusted diesel hydrocarbons. Field observations of subsurface materials and results of chemical analysis of soil samples are presented in Section 4.0.

3.2 IN-SITU GROUNDWATER SAMPLE COLLECTION AND ANALYSIS

In-situ groundwater samples were collected from the bottom of each boring in the upper portion of the first water-bearing zone. The purpose of collecting in-situ groundwater samples was to assess potential impacts to shallow groundwater. In-situ samples were collected by pushing a Hydropunch in-situ groundwater sample collection tool (Hydropunch) into undisturbed soil beneath the bottom of each boring. Details of in-situ groundwater sample collection procedures are provided in Appendix A.

A total of seven in-situ groundwater samples were collected (one per boring) and submitted to D&M Laboratories for analysis. However, the sample collected from the bottom of boring ATB-

SAC87.18

Î

25 was broken during transport to the lab and therefore could not be analyzed. The remaining six samples were analyzed for TPH-d by EPA 8015M and PAHs by EPA 8310. Results of chemical analysis of in-situ groundwater samples are presented in Section 4.0.

SAC87.18

4.0 <u>RESULTS</u>

This section presents the results of additional subsurface investigation in OU S-5. Observations of subsurface materials made during drilling, and chemical analysis of soil and in-situ groundwater samples are presented. Logs of borings drilled for this investigation are included in Appendix B. Summary analytical results for both water and soil are provided on Table 2. Comprehensive analytical results are tabulated in Appendix C. Soil boring locations are shown on Figures 2 and 3. Soil sample depths are shown on Figures 4 and 5. Copies of analytical laboratory reports are provided in Appendix D.

4.1 SUBSURFACE OBSERVATIONS

Subsurface materials encountered during drilling of borings for this investigation consist of fill materials (primarily silty sandy gravel) and underlying native soil. Fill materials generally extend to a depth of three to five feet bgs. Native soils consist primarily of clayey silts and unconsolidated silty fine-grained sands (Figures 4 and 5). Pores and seams are common in the native soil and may provide preferential pathways for downward movement of liquid through relatively fine-grained soil. Observed stratigraphy was consistent with that observed in previous investigation at the site. A detailed description of site-wide geology can be found in the Addendum RI/FS (Dames & Moore, 1991b).

Evidence of hydrocarbon impacts to soil was observed in soil samples and cores collected from borings ATB-21, ATB-22, ATB-24, and ATB-25. No evidence of hydrocarbon impacts were observed in borings ATB-23, ATB-26, and ATB-27. Evidence of hydrocarbon impacts consisted of anomalous soil color (greenish-gray or greenish-gray mottled with yellowish-brown) and the presence of a hydrocarbon odor. Free product was not observed in any soil samples or cores collected during this investigation.

Cross-sections A-A' and B-B' (Figure 4 and Figure 5) show the estimated lateral and vertical extent of hydrocarbon impacts to soil in the area of this investigation. Variations in the vertical extent of impacts to soil were observed. In borings ATB-21 and ATB-22, evidence of impacts were not observed until approximately 16 feet bgs. Greenish-gray soil staining was observed to a depth of approximately 28 feet bgs (below the water table) in boring ATB-21. However, in boring ATB-22, the apparent impacts only extended to a depth of 18 feet bgs (approximately seven feet above the water table).

Evidence of hydrocarbon impacts in boring ATB-24 were similar to those of ATB-21 in that stained soil was not observed until approximately 17 feet bgs and extended to approximately 28 feet bgs (below the water table).

In boring ATB-25, evidence of hydrocarbon impacts observed were shallower than the impacts observed in ATB-21, ATB-22, or ATB-24. Observed impacts in ATB-25 extended from three to approximately 18 feet bgs (approximately seven feet above the water table).

4.2 LABORATORY ANALYTICAL RESULTS

A total of 23 soil samples were selected for chemical analysis. Table 1 lists the soil boring from which the sample was collected, the depth of the sample selected for chemical analysis, and the analysis performed. Table 1 also lists the analyses performed on the in-situ groundwater sample collected from each boring.

4.2.1 Soil Sample Analysis Results

Table 2 presents a summary of the results of chemical analysis of soil samples. Of the 23 soil samples analyzed, ten had reported hydrocarbon detections. However, the detections were reported as "non-target analytes" of either oil or kerosene. TPH as diesel was not reported for any of the soil samples analyzed.

TPH as oil was reported for samples collected from borings ATB-21, ATB-22, ATB-23, and ATB-24 at concentrations of 65 to 3,000 milligrams per kilogram (mg/kg) (Figures 4 and 5). The lowest concentration of 65 mg/kg was reported for the sample collected from ATB-22 at 15.0 feet bgs (the only detection in that boring; see Figure 4). The highest concentration of 3,000 mg/kg was reported for the sample collected from ATB-24 at 19.5 feet bgs (the shallowest detection in that boring; see Figure 4).

TPH as kerosene was reported only for samples collected from ATB-25. The reported concentrations decrease with sample depth ranging from 2,100 mg/kg for the sample collected at 5.5 feet bgs to 100 mg/kg for the sample collected from 15.0 feet bgs (Figure 4). Results of analysis of soil samples collected below this depth in ATB-25 were reported as non-detect.

8

No PAH compounds were reported for any of the soil samples analyzed.

4.2.2 In-Situ Groundwater Sample Analysis Results

Table 2 presents a summary of the results of chemical analysis of in-situ groundwater samples. Of the six samples analyzed (the sample collected from ATB-25 was broken during shipment and therefore could not be analyzed), three had reported diesel detections. Reported diesel concentrations range from 0.290 milligrams per liter (mg/L) for the sample collected beneath ATB-22 to 2.9 mg/L for the sample collected beneath ATB-24.

It is anticipated that the analysis results for the in-situ groundwater sample collected from beneath ATB-25 would have been non-detect based on the non-detect results reported for the two deepest soil samples from that boring.

No PAH compounds were reported for any of the in-situ groundwater samples analyzed.

The reason for the reported TPH as diesel detections in in-situ groundwater versus TPH as oil or TPH as kerosene in soil samples is unknown. Laboratory chromatograms for the samples with reported TPH detections are being evaluated to assess the differences between TPH detections in water and soil samples.

5.0 <u>CONCLUSIONS</u>

Based on the results of chemical analysis of soil samples collected from the seven borings drilled around ATB-11, this investigation has delineated the lateral and vertical extent of TPH impacts to soil in this portion of OU S-5. Results of chemical analysis of in-situ groundwater samples suggests that shallow groundwater beneath the area of TPH-impacted soil has also been impacted. Shallow groundwater impacts were shown to be limited to the area beneath the impacted soil delineated by this investigation.

6.0 <u>REFERENCES</u>

Dames & Moore, 1991a, Remedial Investigation/Feasibility Study (RI/FS) Report, Union Pacific Railroad Yard, Sacramento, California, May 1991.

Dames & Moore, 1991b, Addendum Remedial Investigation/Feasibility Study Report, Union Pacific Railroad Yard, Sacramento, California, November 1991.

Dames & Moore, 1992, Remedial Investigation Supplement, September 1992.

Dames & Moore, 1993, Work Plan – Additional Investigation Active (Western) Portion of the UPRR Yard, Sacramento, California, October 1993.

ABLES

主张 在这一个主义的主义

-9 - ¹2

E.E.

and a stand of the second of t

TABLE 1

SUMMARY OF SOIL AND IN-SITU GROUNDWATER ANALYSIS RESULTS SUBSURFACE ANALYSES ADDITIONAL SUBSURFACE INVESTIGATION OPERABLE UNIT S-5 UNION PACIFIC RAILROAD YARD SACRAMENTO, CALIFORNIA

Boring	Sample Depth (feet bgs)	Analysis Performed	
ATB-21	15.0	TPH-d ⁽¹⁾	
ATB-21	20.0	TPH-d ⁽¹⁾ and PAHs ⁽²⁾	
ATB-21	25.0	TPH-d ⁽¹⁾	
ATB-22	15.0	TPH-d ⁽¹⁾	
ATB-22	20.0	TPH-d ⁽¹⁾ and PAHs ⁽²⁾	
ATB-22	25.0	TPH-d ⁽¹⁾	
ATB-23	14.5	TPH-d ⁽¹⁾	
ATB-23	19.5	TPH-d ⁽¹⁾ and PAHs ⁽²⁾	
ATB-23	24.5	TPH-d ⁽¹⁾	
ATB-24	14.5	TPH-d ⁽¹⁾	
ATB-24	19.5	TPH-d ⁽¹⁾ and PAHs ⁽²⁾	
ATB-24	24.5	TPH-d ⁽¹⁾	
ATB-25	5.5	TPH-d ⁽¹⁾	
ATB-25	10.0	TPH-d ⁽¹⁾ and PAHs ⁽²⁾	
ATB-25	15.0	TPH-d ⁽¹⁾ and PAHs ⁽²⁾	
ATB-25	20.0	TPH-d ⁽¹⁾	
ATB-25	25.5	TPH-d ⁽¹⁾	
ATB-26	15.0	TPH-d ⁽¹⁾	
ATB-26	20.5	TPH-d ⁽¹⁾ and PAHs ⁽²⁾	
ATB-26	25.5	TPH-d ⁽¹⁾	
ATB-27	15.0	TPH-d ⁽¹⁾	
ATB-27	19.0	TPH-d ⁽¹⁾ and PAHs ⁽²⁾	

SAC87.18

TABLE 1 (continued)

SUMMARY OF SOIL AND IN-SITU GROUNDWATER ANALYSIS RESULTS SUBSURFACE ANALYSES ADDITIONAL SUBSURFACE INVESTIGATION OPERABLE UNIT S-5 UNION PACIFIC RAILROAD YARD SACRAMENTO, CALIFORNIA

Boring	Sample Depth (feet bgs)	Analysis Performed	
ATB-27	25.0	TPH-d ⁽¹⁾	
ATB-21	Groundwater ⁽³⁾	TPH-d ⁽¹⁾ and PAHs ⁽²⁾	
ATB-22	Groundwater ⁽³⁾	TPH-d ⁽¹⁾ and PAHs ⁽²⁾	
ATB-23	Groundwater ⁽³⁾	TPH-d ⁽¹⁾ and PAHs ⁽²⁾	
ATB-24	Groundwater ⁽³⁾	TPH-d ⁽¹⁾ and PAHs ⁽²⁾	
ATB-26	Groundwater ⁽³⁾	TPH-d ⁽¹⁾ and PAHs ⁽²⁾	
ATB-27	Groundwater ⁽³⁾	TPH-d ⁽¹⁾ and PAHs ⁽²⁾	

Notes: ⁽¹⁾

(2) (3) TPH-d = Total Petroleum Hydrocarbons as Diesel by EPA Method 8015 M.

PAHs = Polynuclear Aromatic Hydrocarbons by EPA Method 8310.

In-situ groundwater samples collected approximately three to five feet below the base of each boring. Sample collected from boring ATB-25 was broken during shipment to the analytical laboratory and therefore was not sampled.

TABLE 2

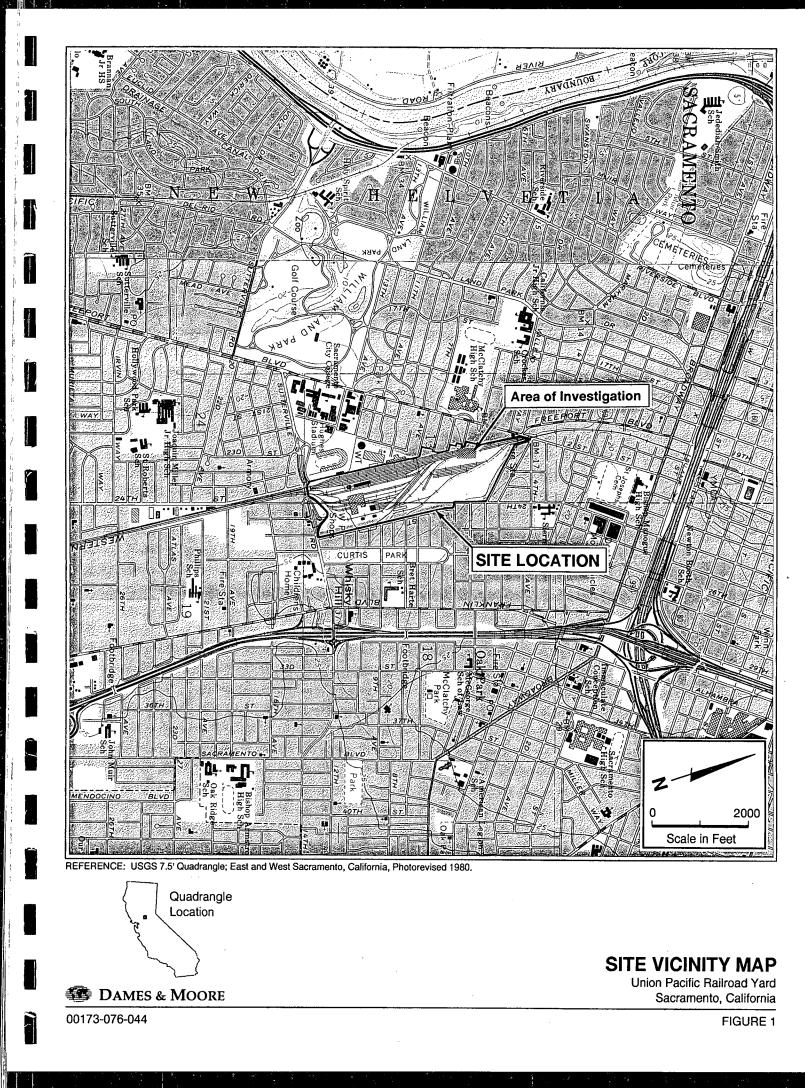
SUMMARY OF CHEMICAL ANALYSIS RESULTS SUBSURFACE ANALYSES ADDITIONAL SUBSURFACE INVESTIGATION OPERABLE UNIT S-5 UNION PACIFIC RAILROAD YARD SACRAMENTO, CALIFORNIA

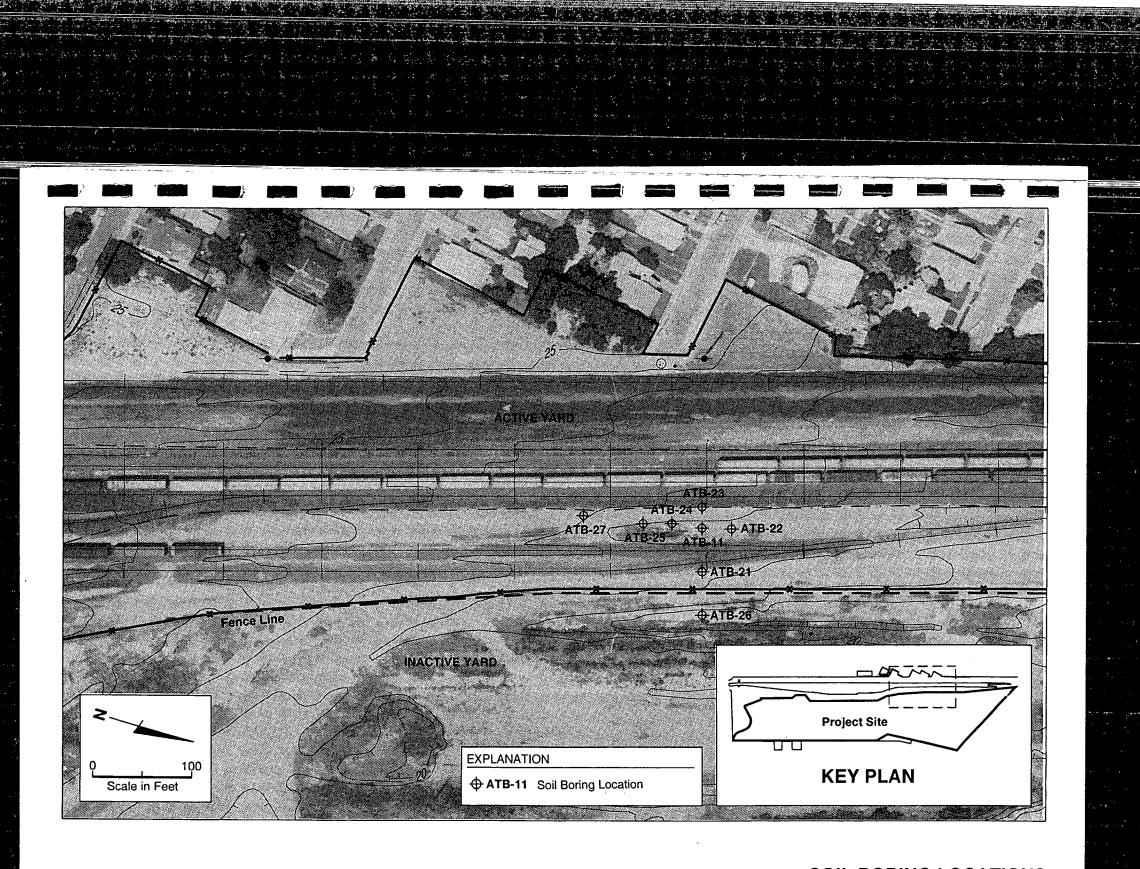
Soil Sample	TPH-d ⁽¹⁾ (mg/Kg)	PAHs ⁽²⁾ (μg/Kg)	Other ⁽³⁾ (mg/Kg)
ATB-21-15.0	ND	ND	Oil - 1,900
ATB-21-20.0	ND	ND	Oil - 2,000
ATB-21-25.0	ND	ND	Oil - 100
ATB-22-15.0	ND	ND	Oil - 65
ATB-23-24.5	ND	ND	Oil - 400
ATB-24-19.5	ND	ND	Oil -3,000
ATB-24-24.5	ND	ND	Oil - 600
ATB-25-5.5	ND	ND	Kerosene - 2,100
ATB-25-10.0	ND	ND	Kerosene - 600
ATB-25-15.0	ND	ND	Kerosene - 100
In-Situ Groundwater Sample	TPH-d ⁽¹⁾ (mg/L)	PAHs ⁽²⁾ (μg/L)	Other ⁽³⁾ (mg/L)
ATB-21W	1.10	ND	ND
ATB-22W	0.29	ND	ND
ATB-24W	2.90	ND	ND

Notes: (1) (2)

(3)

TPH-d = Total Petroleum Hydrocarbons as Diesel by EPA Method 8015 M.

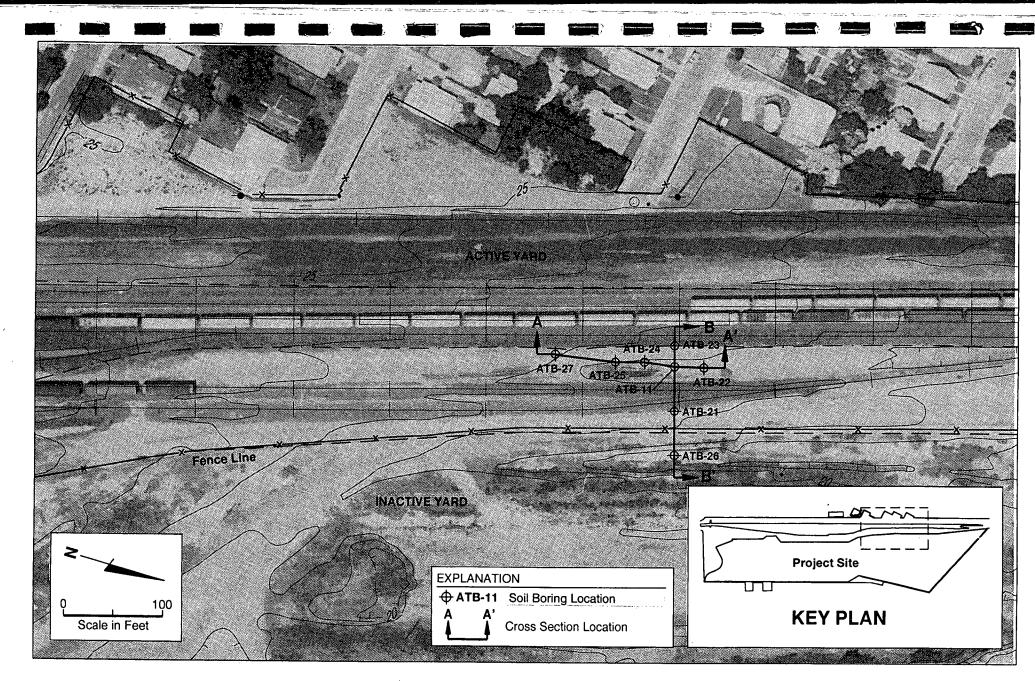

PAHs = Polynuclear Aromatic Hydrocarbons by EPA Method 8310.


These detections were reported by the laboratory as non-target analytes. Diesel-range hydrocarbons may be present in the sample at levels lower than that reported for the non-target analyte.

FIGURES

1 2. 2 2. 2

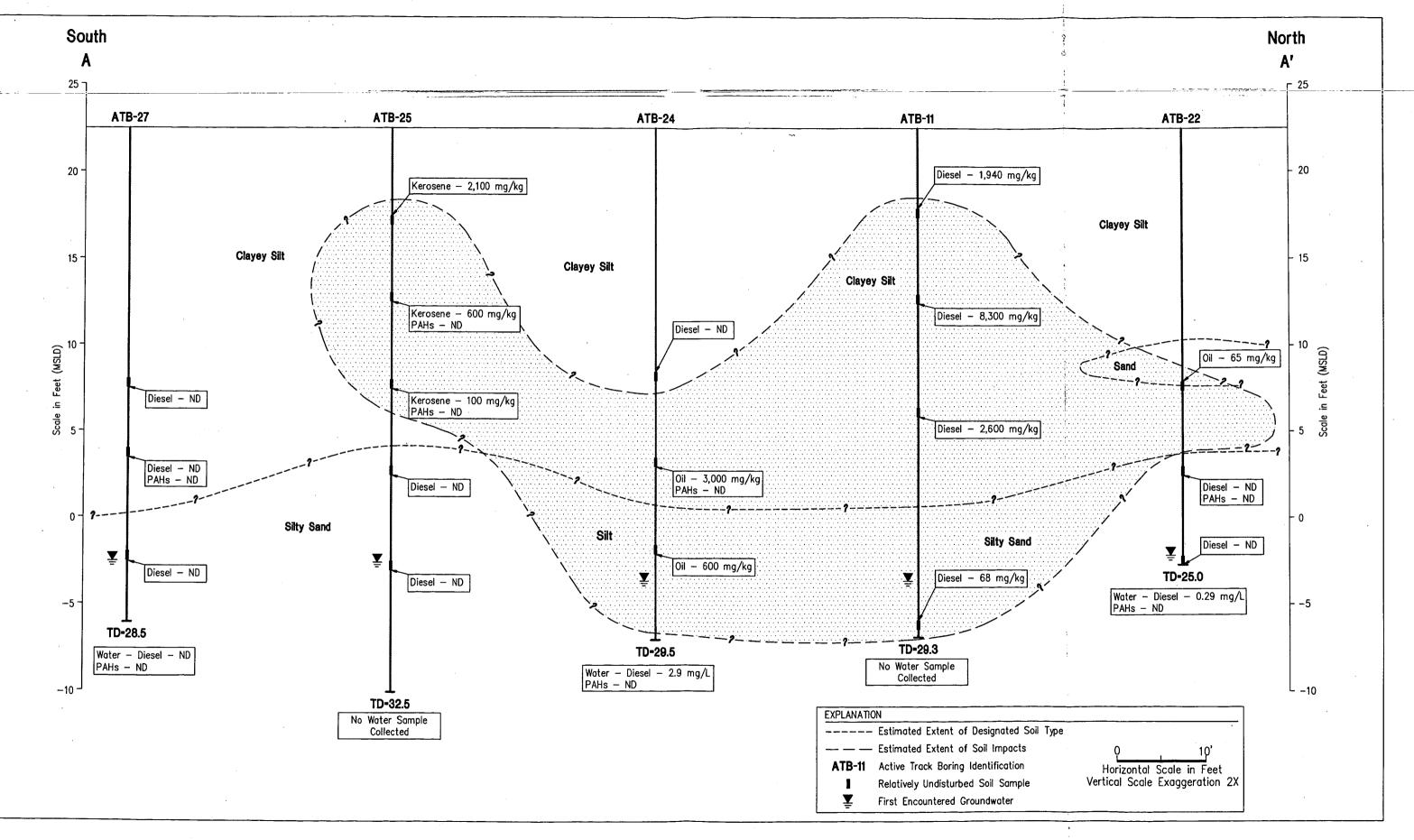
3.4


SOIL BORING LOCATIONS OPERABLE UNIT S-5 Union Pacific Railroad Yard Sacramento, California

DAMES & MOORE

FIGURE 2

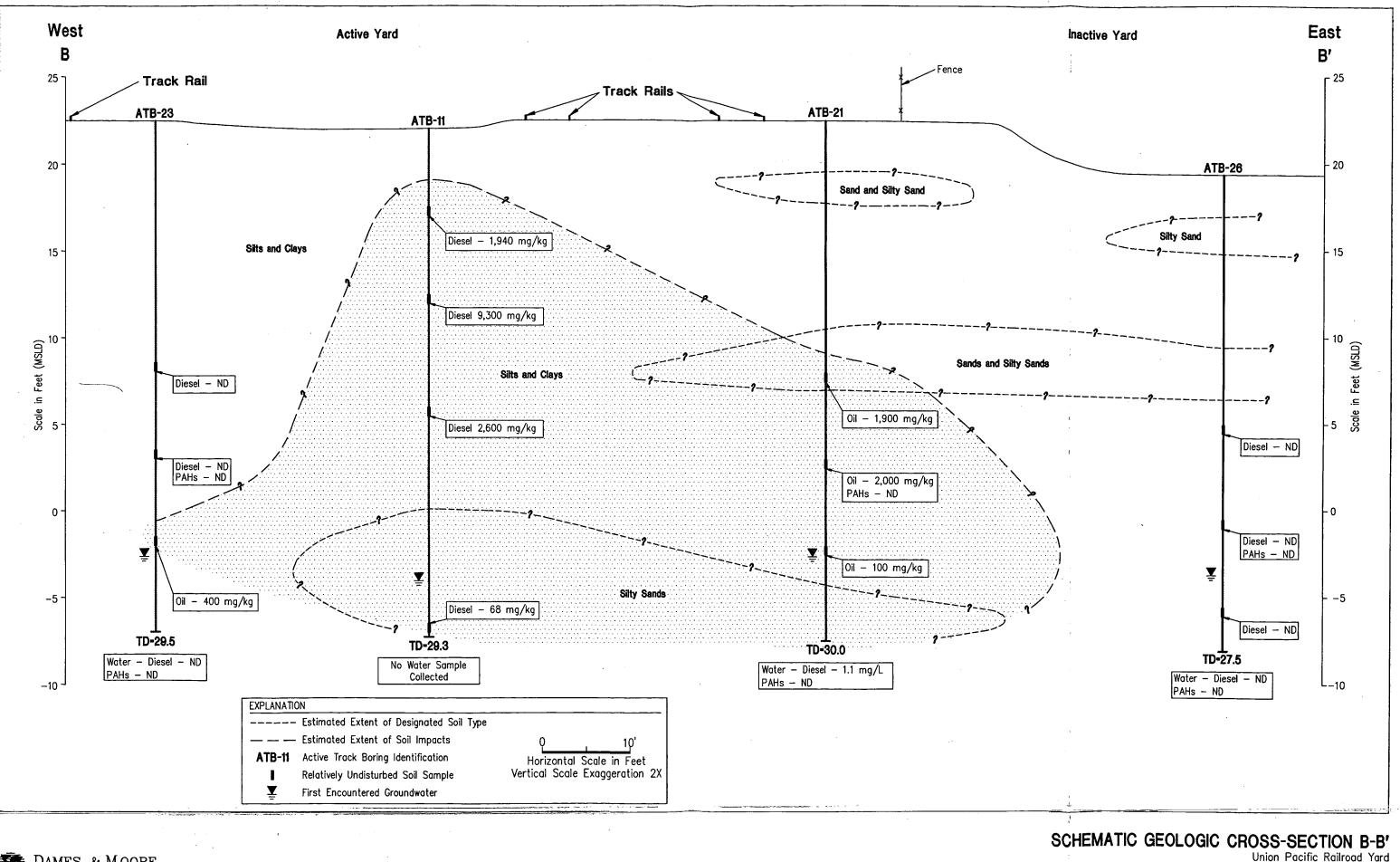
00173-076-044 sjr 11/22/93 SOIL-B


-1.1 يور ويتين ديو. يو د کي کې يو

CROSS-SECTION LOCATION MAP Union Pacific Railroad Yard Sacramento, California

DAMES & MOORE 00173-076-044 sjr 11/29/93 x-sec

FIGURE 3



DAMES & MOORE

00173-076-044 SJR 11/29/93 sec-ao

SCHEMATIC GEOLOGIC CROSS-SECTION A-A' Union Pacific Railroad Yard

Sacramento, California

DAMES & MOORE

Sacramento, California

Appendix

. . .

.

APPENDIX A FIELD METHODS - ADDITIONAL SUBSURFACE INVESTIGATION - ACTIVE YARD UNION PACIFIC RAILROAD YARD SACRAMENTO, CALIFORNIA

A.1 SOIL BORINGS

Seven soil borings were completed at the locations shown on Figure 2. Soil borings were completed to evaluate the presence of hydrocarbons in subsurface soils in the northern portion of OU S-5 around former boring ATB-11. Previous investigation performed in this area in 1991 found diesel-impacted soil at up to 8,300 mg/kg in ATB-11.

Soil borings were completed to or just beneath the water table at approximately 25 to 30 below the native soil surface using hollow stem auger drilling methods. Soils were logged according to the Unified Soil Classification System.

A.1.1 Drilling and Sampling Procedures

Drilling was conducted using a truck mounted drill rig equipped with 8-inch diameter hollow stem augers. This drilling method was performed without the introduction of drilling fluids (which may mobilize chemicals) and allowed for the collection of relatively undisturbed soil samples through the hollow stem of the auger.

Continuous soil sampling was conducted utilizing a 2 1/2-inch diameter CME five-foot long split-barrel sampler and an 18-inch driven California Modified (CM) sampler. Soil cores were logged according to the Unified Soil Classification System (USCS).

The five-foot sample barrel fits within the lead auger, extending a few inches in front of the auger head. Upon advancing the sampler five feet, the sample system was lifted from within the auger and removed from the leading end of the rod assembly. The sampler assembly was then removed, allowing the split tube to be separated and the sample removed.

A CM-sampler was used to collect and retain soil samples at selected intervals for potential chemical analyses. The CM-sampler was also used for any interval where core recovery and retention became difficult.

The CM-sampler was fitted with 2¹/₂-inch diameter six-inch long stainless steel rings. During use, the CM-sampler was driven 18 inches or until refusal into undisturbed soil. The sampler was driven using a 140-pound hammer dropping 30 inches. Hammer blows required to drive the sampler each 6-inch increment of the 18-inch interval were recorded on the boring log. The sampler was then removed from the auger, and the shoe and adapter were removed, allowing the sampler to be separated and the stainless steel sample rings to be removed.

Sample rings were separated with a clean knife. The exposed ends of the rings were covered with 2-mil Teflon sheets and secured with tight-fitting plastic end caps. Sample labels were affixed to the end caps and contained the following information: boring number; sample location; sample number; sample depth; date of sampling; time of sampling; sample collector's name; soil type (USCS); and project name.

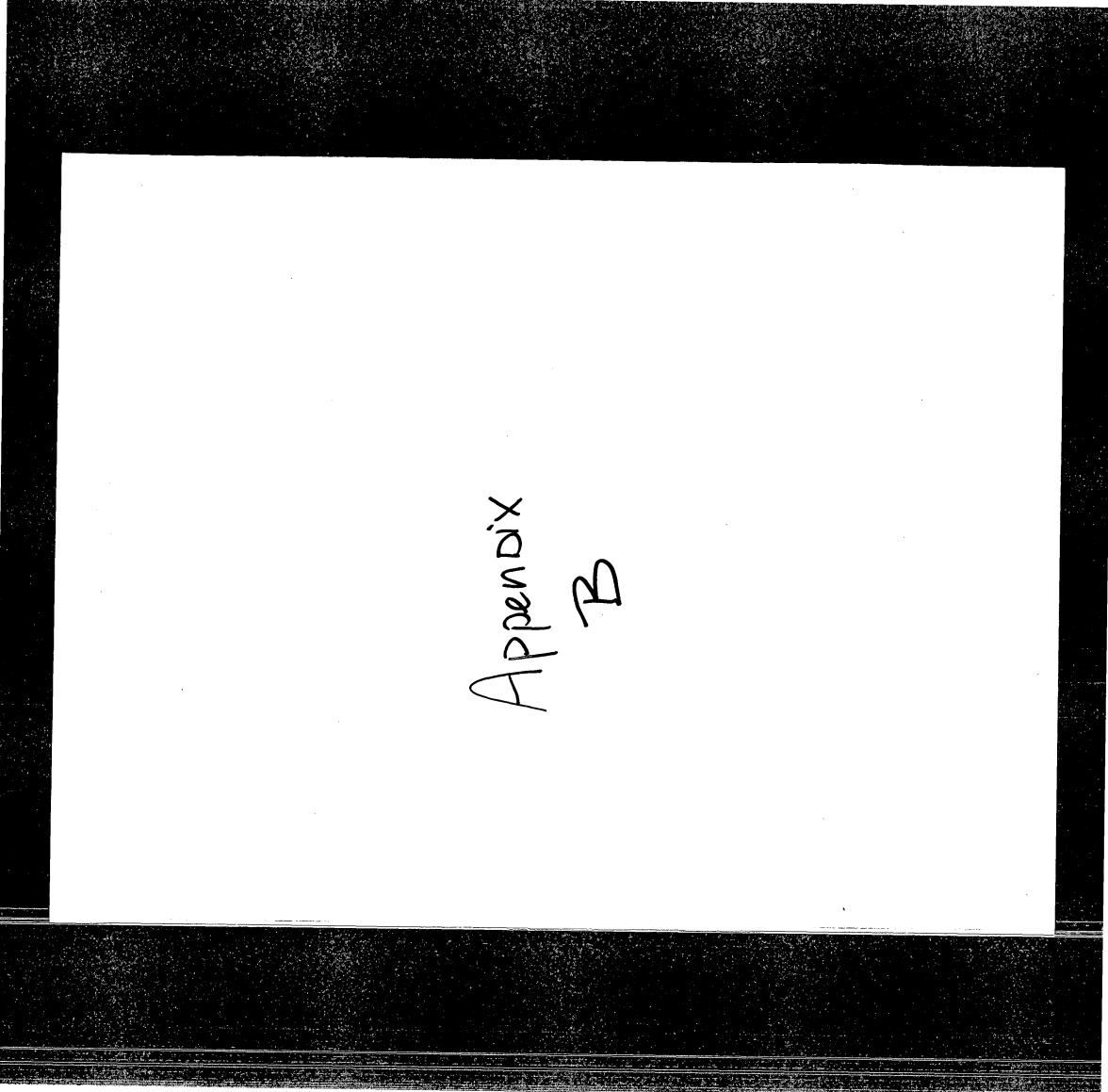
Two rings from the 18-inch CM-sampler were retained from each sample interval. These samples have the same sample identification numbers except for postscripts "A or B". The lowest ring, Sample "A", was retained for potential chemical testing, "B" samples were retained for possible future chemical analyses or possible physical testing. Sample rings were screened with a photoionization detector (PID) to evaluate whether chemical analyses were warranted.

If the boring did not appear to have a potential for caving, the augers were removed from the borehole, and a 3% bentonite/cement grout mixture was poured down the borehole until the grout was flush with the ground surface. If it was anticipated the boring did have the potential for caving, or if groundwater was encountered, then the cement grout was tremmied through the augers until flush with the surface.

After each use, samplers were washed thoroughly with a steam cleaner. After completion of each soil boring, the augers, drill bit, drill rod, and sampling equipment were transported to the designated cleaning area where they were steam cleaned. A self-contained steam cleaning trailer was utilized for steam cleaning.

A.2 IN-SITU GROUNDWATER SAMPLE COLLECTION

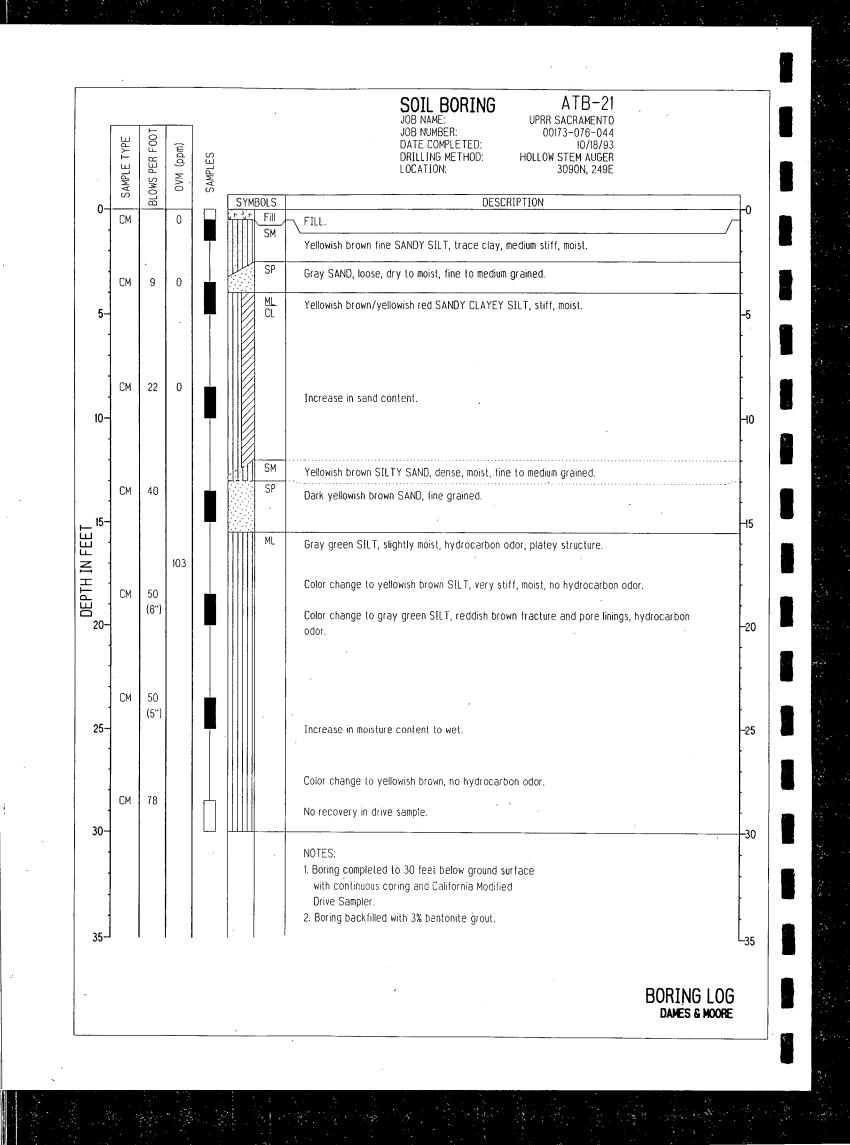
In-situ groundwater samples were collected with a Hydropunch^m or similar in-situ groundwater water sample collection tool. The Hydropunch^m is designed to obtain a representative formation water sample without a permanent monitoring well installation. The tool body consists of a stainless steel outer tube, an inner sample chamber, sample chamber Teflon check balls, and a

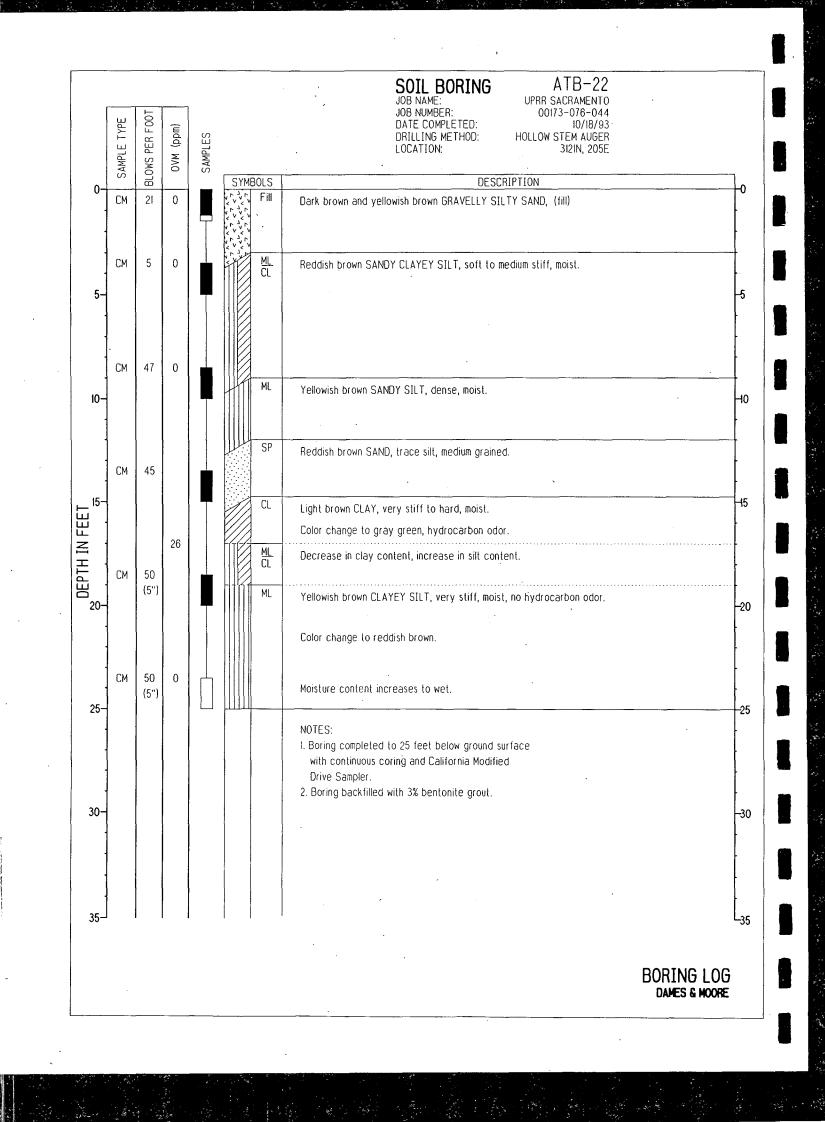

drive point on the bottom, all of which can be dismantled for decontamination. The outside diameter of the tool is 1.66 inches and the length is 63.25 inches.

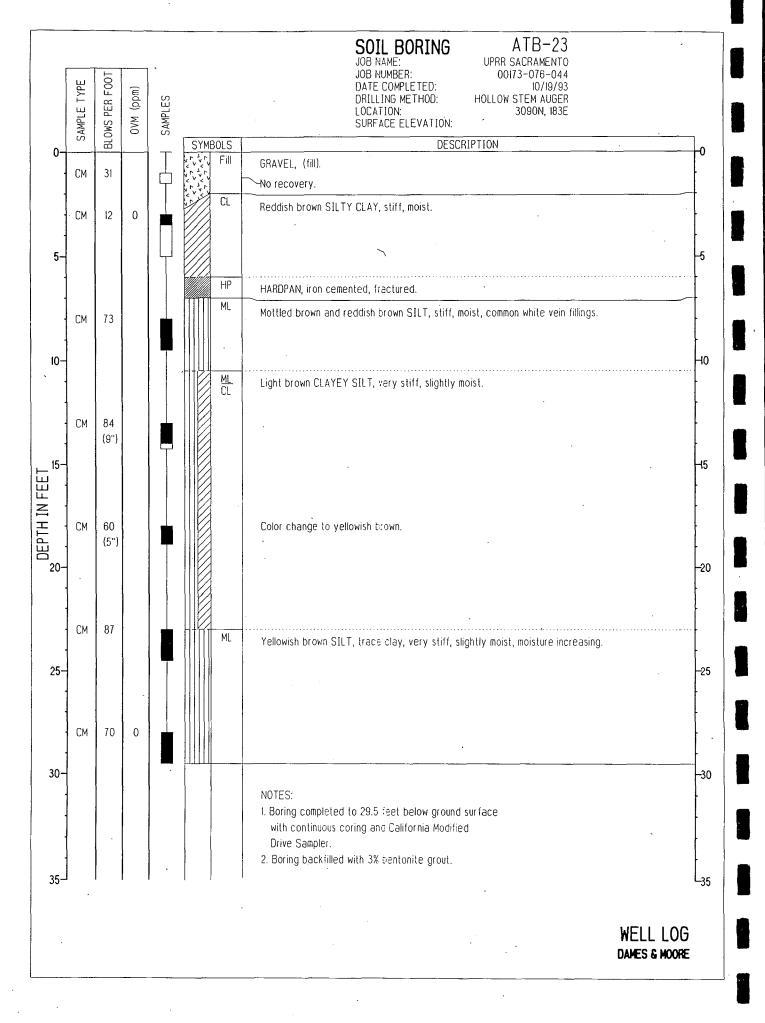
Once the target depth was reached by the drilling, the in-situ sampling tool was pushed an additional 24 to 36 inches. An upward pull on the tool opened the inlet section allowing groundwater to flow into the sample chamber. A Teflon check ball sealed the sample chamber when the inlet was closed, allowing the groundwater sample to remain in the chamber until brought to ground surface. The sample was then transferred from the sample chamber through a Teflon tube into one-liter amber glass bottles. All samples were placed on ice and kept in coolers until delivered to the laboratory for analysis.

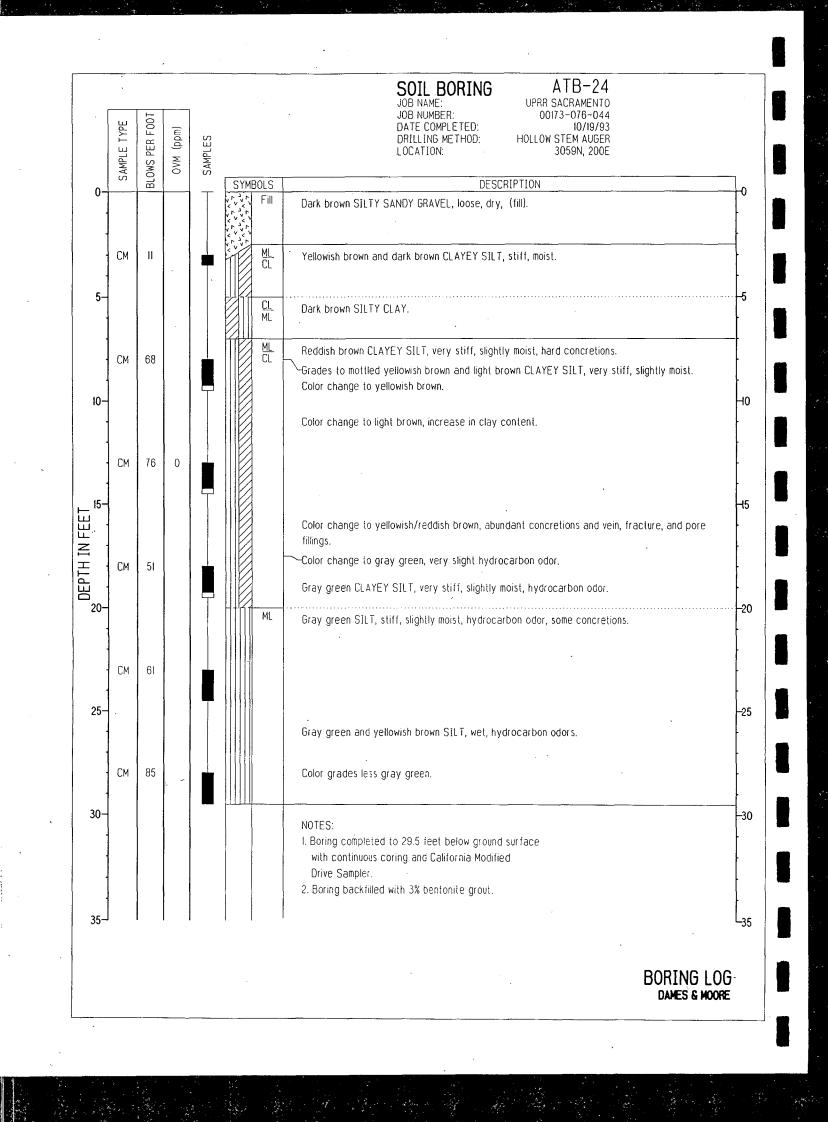
A.3 ANALYTICAL PROCEDURES

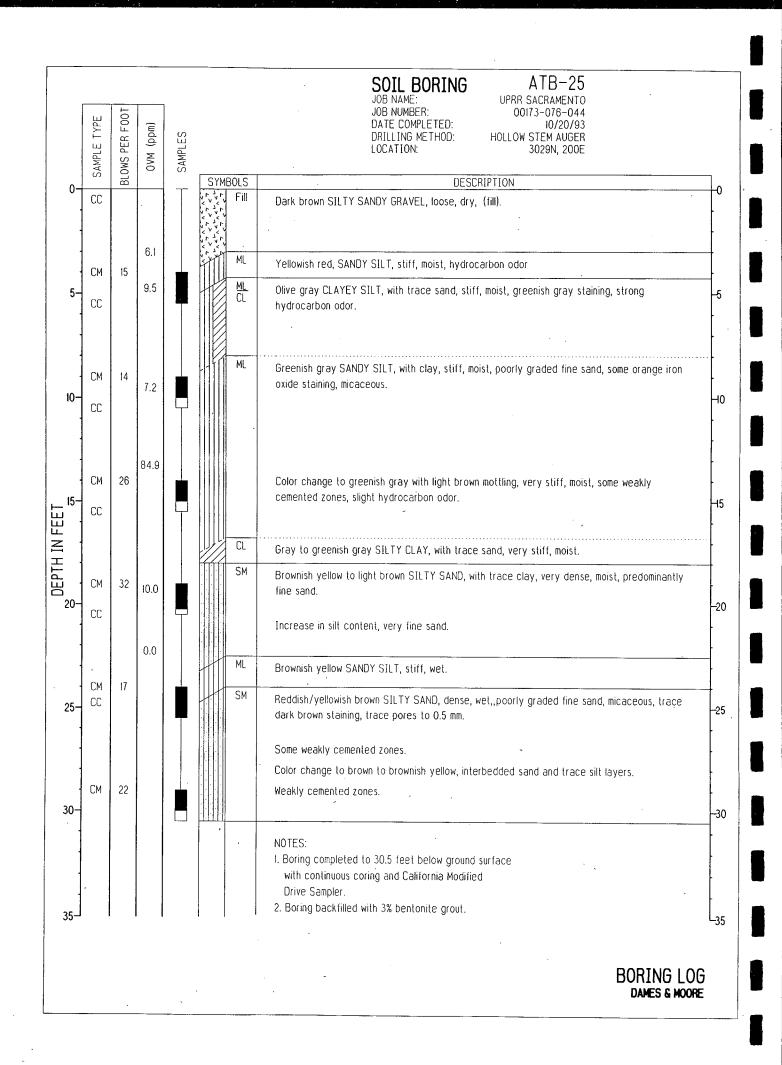
A summary of sampling criteria, analytical parameters, and methods is provided in Table 1. A minimum of three soil samples per boring were submitted to the laboratory for chemical analyses: 1) from the area with the highest visible staining; and 2) from soil that was visibly "clean" directly below the visibly stained soil. These samples (a total of 23) were analyzed for total petroleum hydrocarbons (TPH) as diesel (EPA Method 8015 modified). Selected samples with visible staining were also analyzed for polynuclear aromatic hydrocarbons (PAHs) by EPA Method 8310.

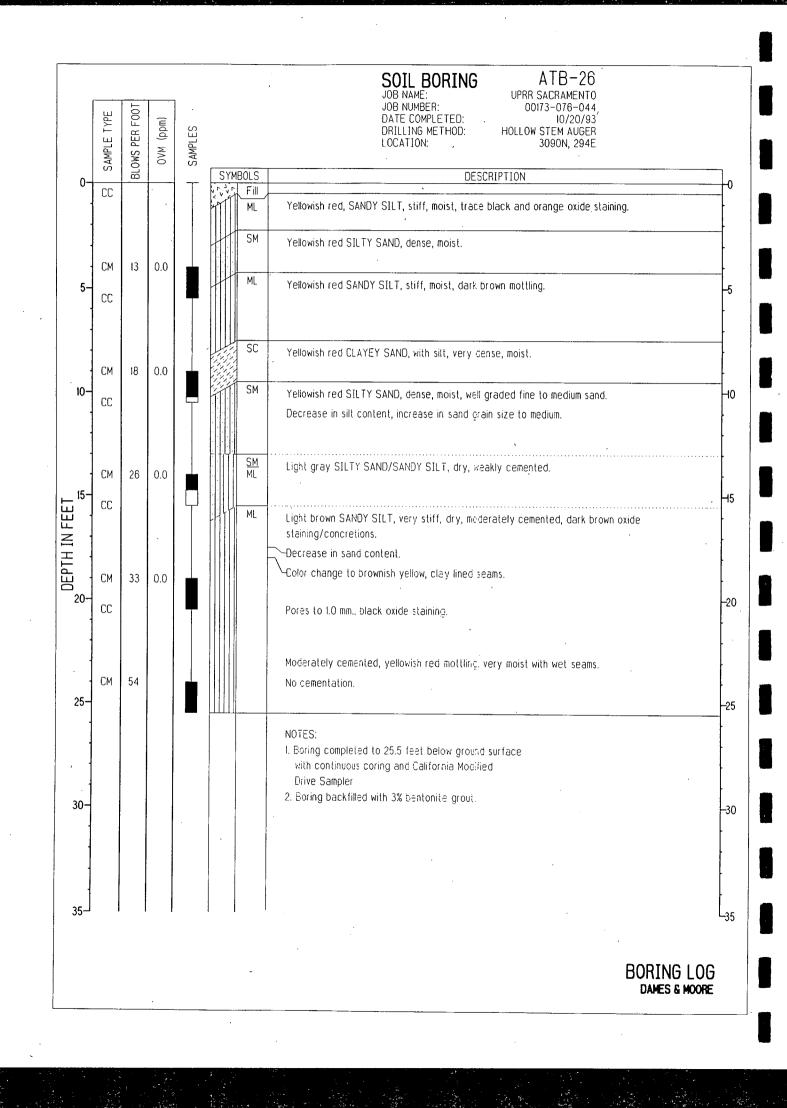

In-situ groundwater samples were analyzed for TPH as diesel by EPA 8015M and PAHs by EPA Method 8310.

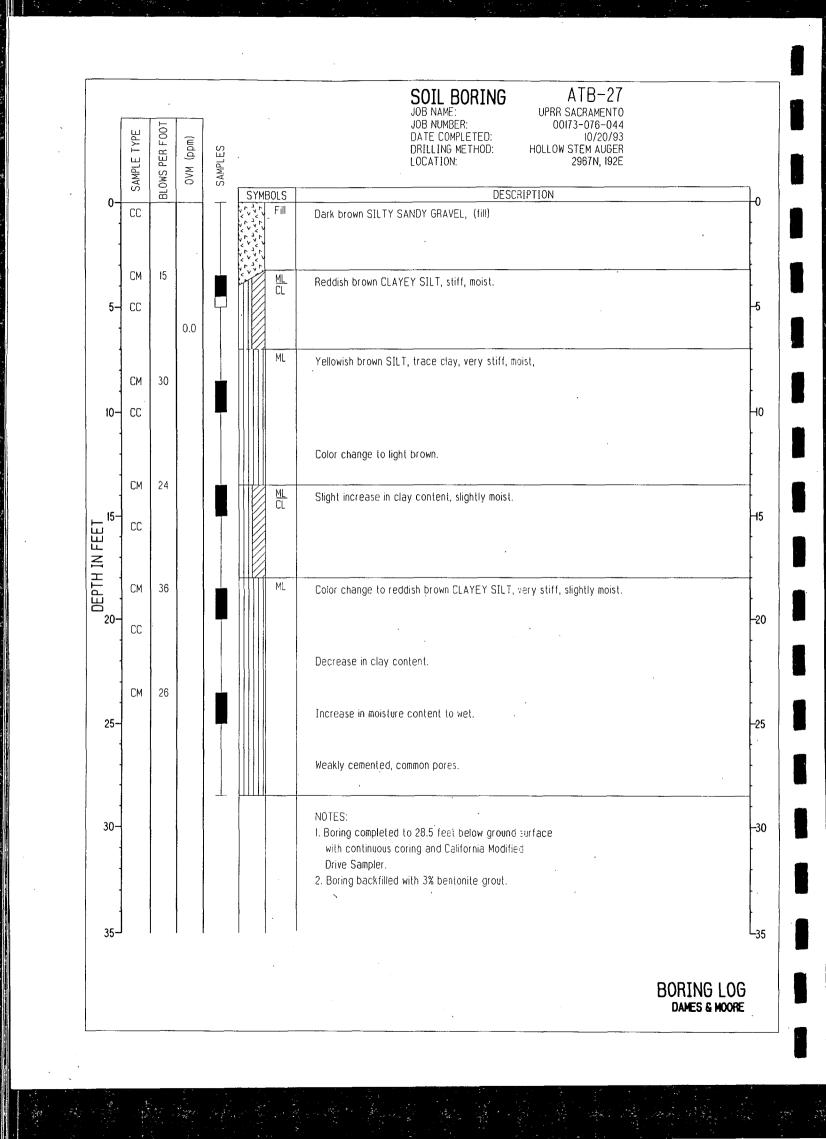



APPENDIX B BORING LOGS


UNION PACIFIC RAILROAD YARD SACRAMENTO, CALIFORNIA


SAC87.18





South States

Appundix

APPENDIX C SOIL AND IN-SITU GROUNDWATER SAMPLE ANALYSIS RESULTS TABLES

UNION PACIFIC RAILROAD YARD SACRAMENTO, CALIFORNIA

TABLE C-1 SOIL ANALYTICAL RESULTS - DEISEL RANGE TPHC (METHOD 8015 MODIFIED) ACTIVE SITE PORTION (OU S-5) UNION PACIFIC RAILROAD YARD SACRAMENTO, CALIFORNIA

SAMPLE	DATE	DEPTH	DIESEL	OIL	KEROSENE
	DATE	Derin	DIESEL	OIL	RERUSERE
			mg/kg (ppm)	mg/kg (ppm)	mg/kg (ppm)
ATB-21	10/18/93	15.0	< 50	1900	· -
ATB-21	10/18/93	20.0	<2000	2000	-
ATB-21	10/18/93	25.0	< 100	100	-
ATB-22	10/18/93	15.0	< 10	65	-
ATB-22	10/18/93	20.0	< 5	-	-
ATB-22	10/18/93	25.0	< 5	-	-
ATB-23	10/19/93	14.5	< 5	-	-
ATB-23	10/19/93	19.5	< 5	-	
ATB-23	10/19/93	24.5	< 150	400	• •
ATB-24	10/19/93	14.5	< 5	_	-
ATB-24	10/19/93	19.5	<3000	3000	-
ATB-24	10/19/93	24.5	< 250	600	. -
ATB-25	10/20/93	5.5	< 5	-	2100
ATB-25	10/20/93	10.0	· < 5	-	600
ATB-25	10/20/93	15.0	< 5	· ·	100
ATB-25	10/20/93	20.0	< 5	-	-
ATB-25	10/20/93	25.5	< 5	•	-
ATB-26	10/20/93	15.0	< 5	-	-
ATB-26	10/20/93	20.5	< 5	-	-
ATB-26	10/20/93	25.5	< 5	-	-
ATB-27	10/20/93	15.0	< 5	-	· -
ATB-27	10/20/93	19.0	< 5		-
ATB-27	10/20/93	25.0	< 5		

OIL and KEROSENE are reported as non-target analytes.

<! = Constituent below detection limit. Detection limits may vary depending on interference by other sample constituents.

- = Parameter not analyzed.

	TABLE	C-2			
SOIL ANALYTICAL RE	ESULTS - POLYNUCLEAR	AROMATIC	HYDROCARBONS	(METHOD	8310)
	ACTIVE SITE POR	TION (OU	S-5)		
	UNION PACIFIC	RAILFOAD N	ARD		
	SACRAMENTO,	CALIFORN	í A		

and the second second

SAMPLE	ATB-21	ATB-22	ATB-23	ATB-24	ATB-25	ATB-25	ATB-26	ATB-27
DATE	10/18/93	10/18/93	10/19/93	10/19/93	10/20/93	10/20/93	10/20/93	10/20/93
DEPTH	20.0	20.0	19.5	19.5	10.0	15.0	20.5	19.0
		2010			1010	1210	2015	
ACENAPHTHENE	<0.200	<0.200	<0.200	<1.000	<0.200	<0.200	<0.200	<0.200
ACENAPHTHYLENE	<0.200	<0.200	<0.200	<1.000	<0.200	<0.200	<0.200	<0.200
ANTHRACENE	<0.050	<0.050	<0.050	<0.250	<0.050	<0.050	<0.050	<0.050`
BENZO(A)ANTHRACENE	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010
BENZO(A)PYRENE	<0.005	<0.005	<0.005	<0.025	<0.005	<0.005	<0.005	<0.005
BENZO(B)FLUORANTHENE	<0.005	<0.005	<0.005	<0.025	<0.005	<0.005	<0.005	<0.005
BENZO(G,H,I)PERYLENE	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010
BENZO(K)FLUORANTHENE	<0.005	<0.005	<0.005	<0.025	<0.005	<0.005	<0.005	<0.005
CHRYSENE	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010
DIBENZO(A, H)ANTHRACENE	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010
FLUORANTHENE	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010
FLUORENE	<0.020	<0.020	<0.020	<0.100	<0.020	<0.020	<0.020	<0.020
INDENO(1,2,3-CD)PYRENE	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010
NAPHTHALENE	<0.100	<0.100	<0.100	<0.500	<0.100	<0.100	<0.100	<0.100
PHENANTHRENE	<0.050	<0.050	<0.050	<0.250	<0.050	<0.050	<0.050	<0.050
PYRENE	<0.010	<0.010	<0.010	<0.050	<0.010	<0.010	<0.010	<0.010

All units reported as mg/kg (ppm)

< = Constituent below detection limit. Detection limits may vary depending on interference by other sample constituents.

- = Parameter not analyzed.

TABLE C-3 WATER ANALYTICAL RESULTS - DEISEL RANGE TPHC (METHOD 8015 MODIFIED) ACTIVE SITE PORTION (OU S-5) UNION PACIFIC RAILROAD YARD SACRAMENTO, CALIFORNIA

<u> </u>				
SAMPLE	DATE	DIESEL		
	·····	mg/L (ppm)	· · ·	•
ATB-21	10/18/93	1.10		
ATB-22	10/18/93	0.29		
ATB-23	10/19/93	<0.25		
ATB-24	10/19/93	2.90		
ATB-26	10/20/93	<0.50		
ATB-27	10/20/93	<0.25		
				_

< = Constituent below detection limit. Detection limits may vary depending on interference by other sample constituents.

= Parameter not analyzed.

TABLE C-4 WATER ANALYTICAL RESULTS - POLYNUCLEAR AROMATIC HYDROCARBONS (METHOD 8310) ACTIVE SITE PORTION (OU S-5) UNION PACIFIC RAILFOAD YARD SACRAMENTO, CALIFORNIA

and a state of the second s

SAMPLE	ATB-21	ATB-22	ATB-23	ATB-24	ATB-26	ATB-27
DATE	10/18/93	10/18/93	10/19/93	10/19/93	10/20/93	10/20/93
22		10, 10, 75	10/17/75	10/17/75	10/20//5	10/20//3
ACENAPHTHENE	<10.00	<10.00	<10.00	<10.00	<10.00	<10.00
ACENAPHTHYLENE	<10.00	<10.00	<10.00	<10.00	<10.00	<10.00
ANTHRACENE	< 2.50	< 2.50	< 2.50	< 2.50	< 2.50	< 2.50
BENZO(A)ANTHRACENE	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
BENZO(A)PYRENE	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
BENZO(B)FLUORANTHENE	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
BENZO(G,H,I)PERYLENE	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
BENZO(K)FLUORANTHENE	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
CHRYSENE	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
DIBENZO(A,H)ANTHRACENE	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
FLUORANTHENE	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
FLUORENE	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
INDENO(1,2,3-CD)PYRENE	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
NAPHTHALENE	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00
PHENANTHRENE	< 2.50	< 2.50	< 2.50	< 2.50	0.73	< 2.50
PYRENE	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

All units reported as ug/L

< = Constituent below detection limit. Detection limits may vary depending on interference by other sample constituents.

- = Parameter not analyzed.

Appendix

APPENDIX D LABORATORY ANALYTICAL REPORTS

UNION PACIFIC RAILROAD YARD SACRAMENTO, CALIFORNIA

Í

3700 Lakeville Highway, Petaluma, CA 94954 P.O. Box 808024, Petaluma, CA 94975-8024 Telephone: (707) 763-8245 FAX (707) 763-4065

Jim Brake Dames & Moore-Sacramento 8801 Folsom Blvd - Suite 200 Sacramento, CA 95826 November 4, 1993

Customer Project: 00173-076-044 UPRR-SACTO Laboratory Job: L9310211

On October 22, 1993 we received 30 sample(s) for analysis. Samples were analyzed by the following method(s):

Diesel (EPA 8015M)

PNA's by HPLC (EPA 8310)

Robin Cockerham

Project Manager

RobertPeak

Laboratory Director Robert Peak

CASE NARRATIVE FOR L9310211 - UPRR SACRAMENTO

LABELLING OF SOILS:

Sample Label ID=ATB-25 5.0-5.5 L9310211-13: COC ID=ATB-25-9.0-10.0 Sample Label ID=ATB-25 9.5-10.0 L9310211-14: COC ID=ATB-25-14.0-15.0 Sample Label ID=ATB-25 14.5-15.0 L9310211-16: COC ID=ATB-25-24.0-25.5 Sample Label ID=ATB-25 25.0-25.5 L9310211-17: COC ID=ATB-26-19.0-20.5 Sample Label ID=ATB-26 20.0-20.5 L9310211-18: COC ID=ATB-26-24.0-25.5 Sample Label ID=ATB-26 25.0-25.5 L9310211-19: COC ID=ATB-26-14.0-15.0 Sample Label ID=ATB-26 14.0-14.25 L9310211-20: COC ID=ATB-27-18.5-19.0 Sample Label ID=ATB-27 18.5-20.0	L9310211-12:	COC ID=ATB-25-4.0-5.5
Sample Label ID=ATB-25 9.5-10.0 L9310211-14: COC ID=ATB-25-14.0-15.0 Sample Label ID=ATB-25 14.5-15.0 L9310211-16: COC ID=ATB-25-24.0-25.5 Sample Label ID=ATB-25 25.0-25.5 L9310211-17: COC ID=ATB-26-19.0-20.5 Sample Label ID=ATB-26 20.0-20.5 L9310211-18: COC ID=ATB-26-24.0-25.5 Sample Label ID=ATB-26 25.0-25.5 L9310211-19: COC ID=ATB-26-14.0-15.0 Sample Label ID=ATB-26 14.0-14.25 L9310211-20: COC ID=ATB-27-18.5-19.0		Sample Label ID=ATB-25 5.0-5.5
L9310211-14: COC ID=ATB-25-14.0-15.0 Sample Label ID=ATB-25 14.5-15.0 L9310211-16: COC ID=ATB-25-24.0-25.5 Sample Label ID=ATB-25 25.0-25.5 L9310211-17: COC ID=ATB-26-19.0-20.5 Sample Label ID=ATB-26 20.0-20.5 L9310211-18: COC ID=ATB-26-24.0-25.5 Sample Label ID=ATB-26 25.0-25.5 L9310211-19: COC ID=ATB-26-14.0-15.0 Sample Label ID=ATB-26 14.0-14.25 L9310211-20: COC ID=ATB-27-18.5-19.0	L9310211-13:	COC ID=ATB-25-9.0-10.0
Sample Label ID=ATB-25 14.5-15.0 L9310211-16: COC ID=ATB-25-24.0-25.5 Sample Label ID=ATB-25 25.0-25.5 L9310211-17: COC ID=ATB-26-19.0-20.5 Sample Label ID=ATB-26 20.0-20.5 L9310211-18: COC ID=ATB-26-24.0-25.5 Sample Label ID=ATB-26 25.0-25.5 L9310211-19: COC ID=ATB-26-14.0-15.0 Sample Label ID=ATB-26 14.0-14.25 L9310211-20: COC ID=ATB-27-18.5-19.0		Sample Label ID=ATB-25 9.5-10.0
L9310211-16: COC ID=ATB-25-24.0-25.5 Sample Label ID=ATB-25 25.0-25.5 L9310211-17: COC ID=ATB-26-19.0-20.5 Sample Label ID=ATB-26 20.0-20.5 L9310211-18: COC ID=ATB-26-24.0-25.5 Sample Label ID=ATB-26 25.0-25.5 L9310211-19: COC ID=ATB-26-14.0-15.0 Sample Label ID=ATB-26 14.0-14.25 L9310211-20: COC ID=ATB-27-18.5-19.0	L9310211-14:	COC ID=ATB-25-14.0-15.0
Sample Label ID=ATB-25 25.0-25.5 L9310211-17: COC ID=ATB-26-19.0-20.5 Sample Label ID=ATB-26 20.0-20.5 L9310211-18: COC ID=ATB-26-24.0-25.5 Sample Label ID=ATB-26 25.0-25.5 L9310211-19: COC ID=ATB-26-14.0-15.0 Sample Label ID=ATB-26 14.0-14.25 L9310211-20: COC ID=ATB-27-18.5-19.0		Sample Label ID=ATB-25 14.5-15.0
L9310211-17: COC ID=ATB-26-19.0-20.5 Sample Label ID=ATB-26 20.0-20.5 L9310211-18: COC ID=ATB-26-24.0-25.5 Sample Label ID=ATB-26 25.0-25.5 L9310211-19: COC ID=ATB-26-14.0-15.0 Sample Label ID=ATB-26 14.0-14.25 L9310211-20: COC ID=ATB-27-18.5-19.0	L9310211-16:	COC ID=ATB-25-24.0-25.5
Sample Label ID=ATB-26 20.0-20.5 L9310211-18: COC ID=ATB-26-24.0-25.5 Sample Label ID=ATB-26 25.0-25.5 L9310211-19: COC ID=ATB-26-14.0-15.0 Sample Label ID=ATB-26 14.0-14.25 L9310211-20: COC ID=ATB-27-18.5-19.0		Sample Label ID=ATB-25 25.0-25.5
L9310211-18: COC ID=ATB-26-24.0-25.5 Sample Label ID=ATB-26 25.0-25.5 L9310211-19: COC ID=ATB-26-14.0-15.0 Sample Label ID=ATB-26 14.0-14.25 L9310211-20: COC ID=ATB-27-18.5-19.0	L9310211-17:	
Sample Label ID=ATB-26 25.0-25.5 L9310211-19: COC ID=ATB-26-14.0-15.0 Sample Label ID=ATB-26 14.0-14.25 L9310211-20: COC ID=ATB-27-18.5-19.0		
L9310211-19: COC ID=ATB-26-14.0-15.0 Sample Label ID=ATB-26 14.0-14.25 L9310211-20: COC ID=ATB-27-18.5-19.0	L9310211-18:	
Sample Label ID=ATB-26 14.0-14.25 L9310211-20: COC ID=ATB-27-18.5-19.0		
L9310211-20: COC ID=ATB-27-18.5-19.0	L9310211-19:	
Sample Label ID=ATB-27 18.5-20.0	L9310211-20:	
		Sample Label ID=ATB-27 18.5-20.0

WATER SAMPLES:

FOUR	OF THE WAT	ER SAMPLES	CONTAI	[NED	HIGH	ΙÇ	UANTIT	IES OF	MUD/SLUI	DGE:
	L9310211-2	6 ATB-23W:	40%	of	the	1	Liter	amber	bottle	was
			mud/s	ludg	e.					
	L9310211-2	7 ATB 24W	: 75%	of	the	1	Liter	amber	bottle	was
			mud/s	ludg	e.					
	L9310211-2	9 ATB-26W:	30%	of	the	1	Liter	amber	bottle	was
			mud/s	ludg	e.					
	L9310211-3	0 ATB-27W:	25%	of	the	1	Liter	amber	bottle	was
mud/sludge.										

SAMPLE ATB-25W BROKEN IN SHIPPING TO LABORATORY.

DIESEL (EPA 8015M):

Detection limits for diesel for all water samples were raised due to limited sample available for analysis and splitting sample to analyze for PAH's also. A volume of 200ml was obtained for each analysis for all samples except one, raising normal detection limits for both PAH (8310) and diesel (8015M) analyses by a factor of 5. Sample L9310211-29 ATB-26W had such limited sample that 200ml could not be aliquoted for each analysis. Therefore, one extraction was performed and extract was split for 8310 and 8015M for diesel causing the detection limits to be raised by an additional factor of 2. Detection limits for soil samples L9310211-1 (ATB-21-13.5-15.0), L9310211-2 (ATB-21-18.5-20.0), L9310211-3 (ATB-21-23.5-25.0), L9310211-4 (ATB-22-13.5-15.0), L9310211-8 (ATB-23-23.0-24.5), L9310211-10 (ATB-24-18.0-19.5), and L9310211-11 (ATB-24-23.0-24.5) were raised due to the high level of non-target analyte present, specifically waste oil. Soil samples L9310211-12 (ATB-25-4.0-5.5), L9310211-13(ATB-25-9.5-10.0), and L9310211-14(ATB-25-14.0-15.0) were ND for diesel but contained hydrocarbons in the range of kerosene.

PAH (EPA 8310):

Detection limits for PAH's for all water samples were raised due to limited sample available for analysis and splitting sample to analyze for diesel's also. A volume of 200ml was obtained for each analysis for all samples except one, raising normal detection limits for both PAH (8310) and diesel (8015M) analyses by a factor of 5. Sample L9310211-29 ATB-26W had such limited sample that 200ml could not be aliquoted for each analysis. Therefore, one extraction was performed and extract was split for 8310 and 8015M for diesel causing the detection limits to be raised by an additional factor of 2.

ANALYTICAL DATA REPORT

Parameter Value Limit Units Extracted Analyzed

8015DS

Diesel -Comments:

Prepared for: Dames & Moore-Sacramento Project Id: 00173-076-044 UPRR-SACTO Sample Id: ATB-21-13.5-15.0 Lab Id: L9310211-1

> ND < 50. -See labnote 17.

29-OCT-93 02-NOV-93

1900 stylig and all

mg/Kg

ANALYTICAL DATA REPORT

Prepared for: Dames & Noore-Sacramento Project Id: 00173-076-044 UPRR-SACTO Sample Id: ATB-21-18.5-20 Lab Id: L9310211-2

Parameter

Collected: 18-OCT-93 Received: 22-OCT-93 Reported: 04-NOV-93

Value Limit Units Extracted Analyzed

Diesel	I	ND <	2000	mg/Kg	29-OCT-93	02-NOV-9
- Comments:	- See	Labno	te 17. 🤿	ere myle		
83105						
Naphthalene		ND <	100	ug/Kg	27-0CT-93	30-OCT-9
Acenaphthylene		ND <	200	ug/Kg	27-0CT-93	30-OCT-9
Acenaphthene		ND <	200	ug/Kg	27-0CT-93	30-OCT-9
Fluorene		ND <	20.	ug/Kg	27-0CT-93	30-OCT-9
Phenanthrene		ND <	50.	ug/Kg	27-0CT-93	30-OCT-9
Anthracene		ND <	50.	ug/Kg	27-0CT-93	30-0CT-9
Fluoranthene		ND <	10.	ug/Kg	27-0CT-93	30-OCT-9
Pyrene		ND <	10.	ug/Kg	27-0CT-93	30-001-9
Benzo(a)Anthracene		ND <	10.	ug/Kg	27-0CT-93	30-001-9
Chrysene		ND <	10.	ug/Kg	27-0CT-93	30-OCT-9
Benzo(b)Fluoranthene		ND <	5.0	ug/Kg	27-0CT-93	30-001-9
Benzo(k)Fluoranthene		ND <	5.0	ug/Kg	27-OCT-93	30-001-9
Benzo(a)Pyrene		ND <	5.0	ug/Kg	27-OCT-93	30-OCT-9
Dibenz(ah)Anthracene		ND <	10.	ug/Kg	27-0CT-93	30-OCT-9
Benzo(ghi)Perylene		ND <	10.	ug/Kg	27-001-93	30-OCT-9
Indeno(123cd)Pyrene	-	ND <	10.	ug/Kg	27-OCT-93	30-OCT-9
Surrogate:	•					
2-Fluorobiphenyl	10		•	x	27-0CT-93	30-OCT-9
Benzo(e)Pyrene	10	4.	-	X	27-OCT-93	30-OCT-9

ANALYTICAL DATA REPORT

	Dames & Moore-Sacramento
Project Id:	00173-076-044 UPRR-SACTO
	ATB-21-23.5-25
Lab Id:	L9310211-3

Collected: 18-OCT-93 Received: 22-OCT-93 Reported: 04-NOV-93

Parameter Value Limit Units Extracted Analyzad 801505 comk/ag Lourand

Diesel	ND < 100	mg/Kg	29-0CT-93 29-0CT-93
Comments:	See labnote 17.		

· · · ·

D&M I	Labora	tories
-------	--------	--------

ANALYTICAL DATA REPORT

Prepared for: Dames & Moore-Sacramento Project Id: 00173-076-044 UPRR-SACTO Sample Id: ATB-22-13.5-15 Lab Id: L9310211-4

Collected: 18-OCT-93 Received: 22-OCT-93 Reported: 04-NOV-93

29-OCT-93 29-OCT-93

Paremeter Value Limit Units Extracted Analyzed

10.

8015DS

Diesel Comments:

ND < See labnote 17.

65 myley masteril

mg/Kg

3.7

ANALYTICAL DATA REPORT

Prepared for: Dames & Noore-Sacramento Project Id: 00173-076-044 UPRR-SACTO Sample Id: ATB-22-18.5-20 Lab Id: L9310211-5

Collected: 18-OCT-93 Received: 22-OCT-93 Reported: 04-NOV-93

Parameter Value Limit Units Extracted Analyzed

Diesel	ND <	5.0	mg/Kg	29-OCT-93	29-001-93
Comments:	None				
3310s					
Naphthalene	ND <	100	ug/Kg	27-0CT-93	30-OCT-93
Acenaphthylene	ND <	200	ug/Kg	27-OCT-93	30-0CT-93
cenaphthene	ND <	200	ug/Kg	27-OCT-93	30-0CT-93
Fluorene	ND <	20.	ug/Kg	27-OCT-93	30-0CT-93
Phenanthrene	ND <	50.	ug/Kg	27-OCT-93	30-0CT-93
Anthracene	ND <	50.	ug/Kg	2 7-0 CT-93	30-001-93
fluoranthene	ND <	10.	ug/Kg	27-OCT-93	30-0CT-93
^o yrene	ND <	10.	ug/Kg	27-OCT-93	30-0CT-93
Benzo(a)Anthracene	ND <	10.	ug/Kg	27-oct-93	30-0CT-93
Chrysene	ND <	10.	ug/Kg	27-OCT-93	30-001-93
Benzo(b)Fluoranthene	ND <	5.0	ug/Kg	27-OCT-93	30-0CT-93
Benzo(k)Fluoranthene	ND <	5.0	ug/Kg	27-OCT-93	30-0CT-93
Benzo(a)Pyrene	ND <	5.0	ug/Kg	27-OCT-93	30-0CT-93
)ibenz(ah)Anthracene	ND <	10.	ug/Kg	27-OCT-93	30-0CT-93
Benzo(ghi)Perylene	ND <	10.	ug/Kg	27-OCT-93	30-001-93
Indeno(123cd)Pyrene	ND <	10.	ug/Kg	27-OCT-93	30-0CT-93
- Surrogate:	-				
2-Fluorobiphenyl	82.5	-	x	27-OCT-93	30-0CT-93
Benzo(e)Pyrene	101.	-	x	27-OCT-93	30-0CT-93

ANALYTICAL DATA REPORT

Prepared for: Dames & Moore-Sacramento Project Id: 00173-076-044 UPRR-SACTO Sample Id: ATB-22-23.5-25 Lab Id: L9310211-6

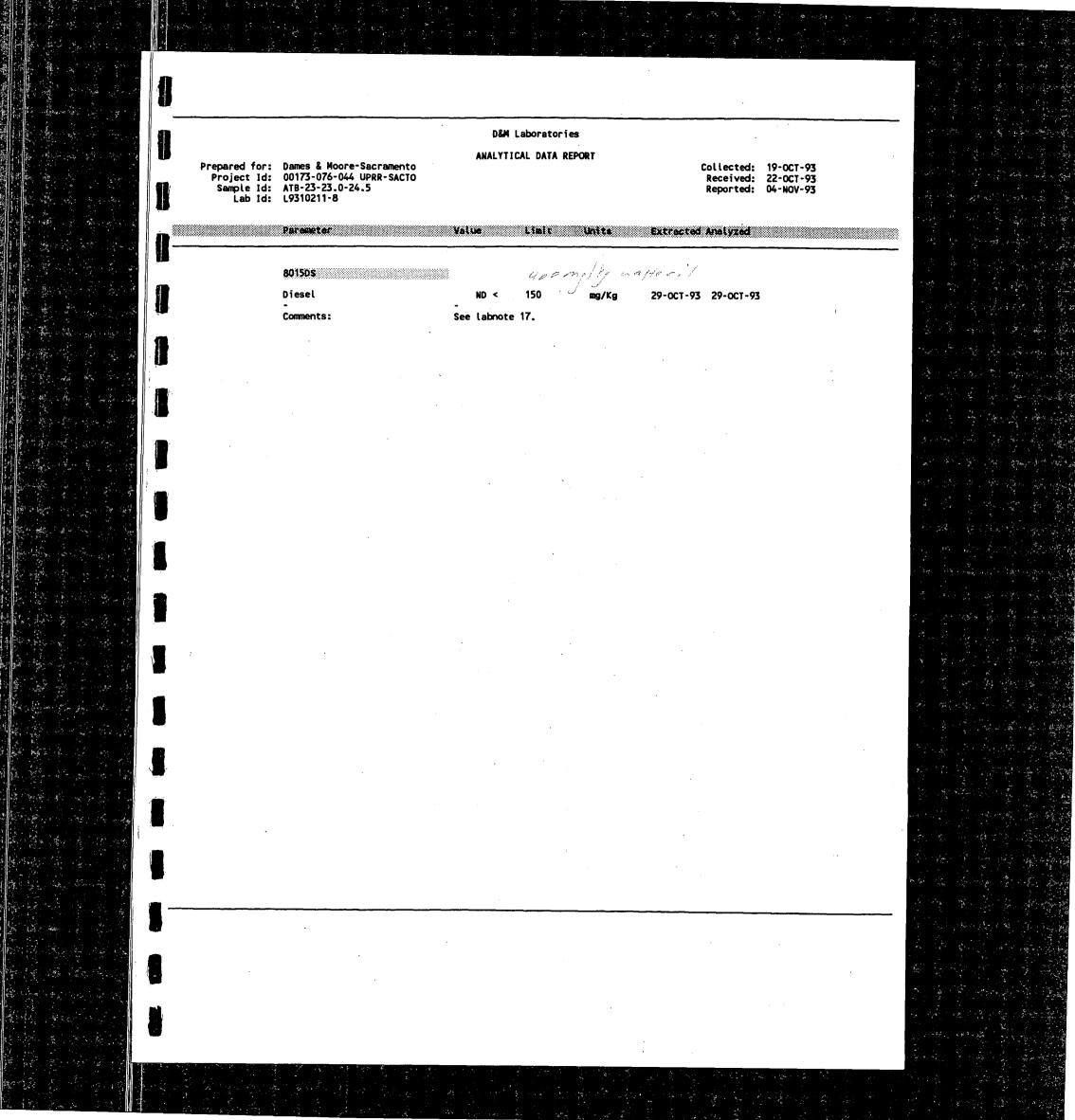
÷ .

Collected: 18-OCT-93 Received: 22-OCT-93 Reported: 04-NOV-93

Comments:	None					
Diesel -	ND <	5.0	mg/Kg	29-0CT-93	29-0CT-93	
8015DS						
		<u></u>		<u></u>		
Parameter	Value	Linit	Units	Extracted	Anelyzed	

D&M Laboratories ANALYTICAL DATA REPORT Prepared for: Dames & Moore-Sacramento Project Id: 00173-076-044 UPRR-SACTO Sample Id: ATB-23-13.0-14.5 Lab Id: L9310211-23 Collected: 19-OCT-93 Received: 22-OCT-93 Reported: 04-NOV-93 Paremeter Limit Units Extracted Analyzed Value 8015DS Diesel 5.0 27-0CT-93 27-0CT-93 mg/Kg ND < Comments: None

ANALYTICAL DATA REPORT


Prepared for: Dames & Moore-Sacramento Project Id: 00173-076-044 UPRR-SACTO Sample Id: ATB-23-18.0-19.5 Lab Id: L9310211-7

Ċ

Collected: 19-OCT-93 Received: 22-OCT-93 Reported: 04-NOV-93

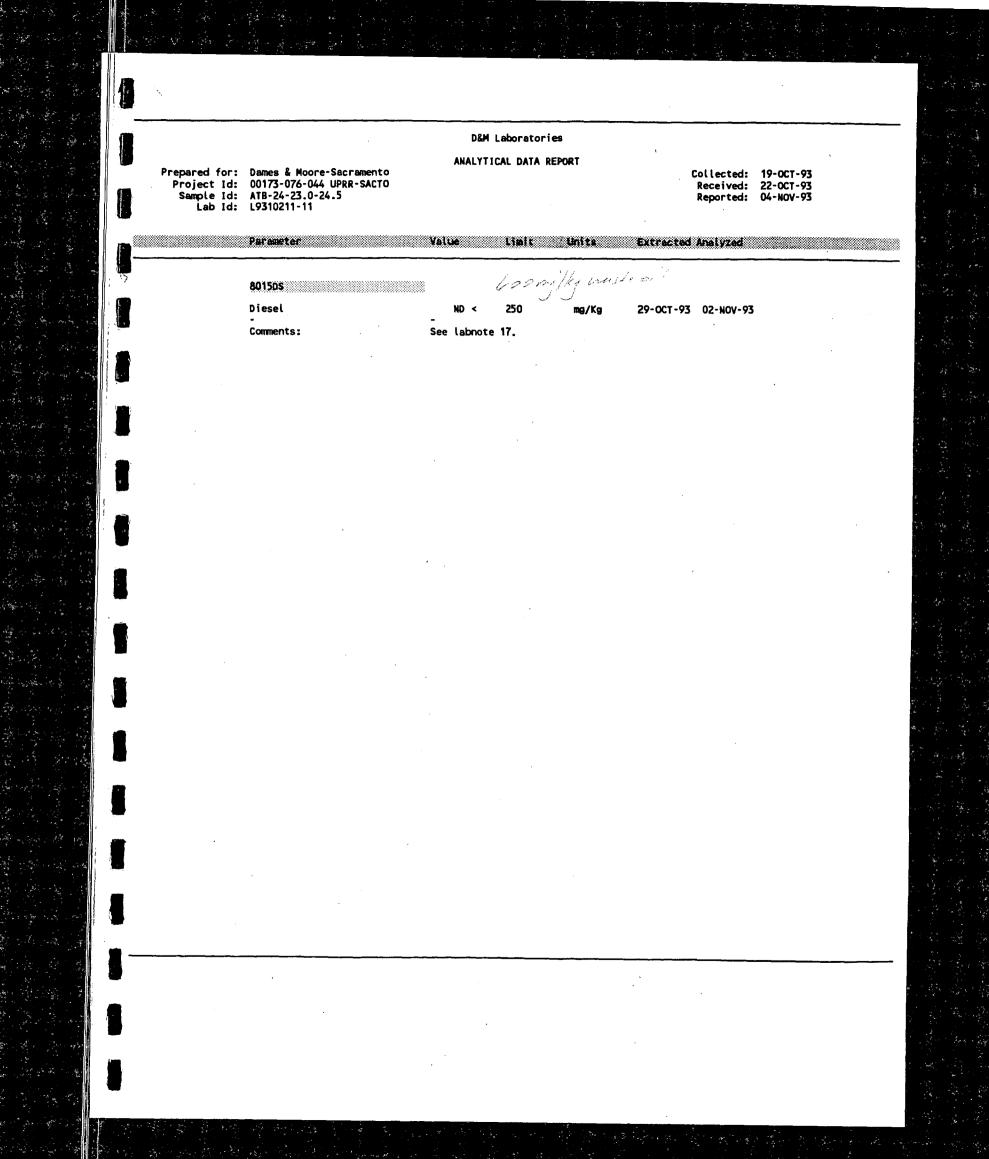
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

80	150\$						
Di	esel	`ND	<	5.0	mg/Kg	29-0CT-93	29-0CT-93
- Co	mments:	None					
83	10s						
۱) د از	phthalene	ND	<	100	ug/Kg	27-OCT-93	30-OCT-93
	enaphthylene	ND	<	200	ug/Kg	27-OCT-93	30-OCT-93
	enaphthene	ND	<	200	ug/Kg	27-OCT-93	30-0CT-93
	uorene	ND	<	20.	ug/Kg	27-OCT-93	30-0CT-93
	enanthrene	ND	<	50.	ug/Kg	27-0CT-93	30-OCT-93
	thracene	ND	<	50.	ug/Kg	27-OCT-93	30-OCT-93
	uoranthene	ND	<	10.	ug/Kg	27-OCT-93	30-OCT-93
	rene	ND	<	10.	ug/Kg	27-OCT-93	30-0CT-93
	nzo(a)Anthracene	ND	<	10.	úg/Kg	27-OCT-93	30-OCT-93
Ch	rysene	ND	<	10.	ug/Kg	27-0CT-93	30-OCT-93
	nzo(b)Fluoranthene	ND	<	5.0	ug/Kg	27-OCT-93	30-0CT-93
	nzo(k)Fluoranthene	ND	<	5.0	ug/Kg	27-OCT-93	30-0CT-93
Be	nzo(a)Pyrene	ND	<	5.0	ug/Kg	27-OCT-93	30-OCT-93
	benz(ah)Anthracene	ND	<	10.	ug/Kg	27-0CT-93	30-OCT-93
	nzo(ghi)Perylene	ND	<	10.	ug/Kg	27-0CT-93	30-OCT-93
	deno(123cd)Pyrene	ND	<	10.	ug/Kg	27-OCT-93	30-OCT-93
	rrogate:	•					70 007 07
	Fluorobiphenyl	87.9)	-	X	27-001-93	30-0CT-93
Be	nzo(e)Pyrene	110.		-	x	27-0CT-93	30-OCT-93
Co	mments:	None					

			D&M L	aboratorie	8				
Project Id: Sample Id:	Dames & Noore 00173-076-044 ATB-24-13.0-14 L9310211-9	UPRR-SACTO	ANALYTIC	AL DATA REI	PORT		Collected: Received: Reported:	22-OCT-93	
	Paremeter		Value	Linit	Units	Extracted	Analyzed		
	8015DS Diesel		ND <	5.0	mg/Kg	29-OCT-93	29-001-93		
-	- Comments:		None						
		•							
			• •						
					•			· .	
			·	1.					
			. ·						

	ĺ
	ĺ
	ļ
the share the	ļ
	ļ
the state of the s	
	1
다. 1911년 - 일종이 가지 않는 것이 있는 것이 있는 것이 있다. 비용 비용 이용이 있는 것이 있는 것이 같이 있는 것이 같이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 없는 것	
and the second sec	
新安治学さらキャ 立心。 新安治学で行わらず。	
the second s	
副長行 生産の しゃ かいてんかい しょうよう たい (数)	

D&M Laboratories


ANALYTICAL DATA REPORT

Prepared for: Dames & Moore-Sacramento Project Id: 00173-076-044 UPRR-SACTO Sample Id: ATB-24-18.0-19.5 Lab Id: L9310211-10

1

Collected: 19-0CT-93 Received: 22-0CT-93 Reported: 04-NOV-93

8015DS	·	3000	malky are	140011	
Diesel	ND <	3000	mg/Kg	29-OCT-93	02-NOV-93
Comments:	See labnot	e 17.			
8310s					
Naphthalene	ND <	500	ug/Kg	27-0CT-93	30-OCT-93
Acenaphthylene	ND <	1000	ug/Kg	27-0CT-93	30-OCT-93
Acenaphthene	ND <	1000	ug/Kg	27-0CT-93	30-OCT-93
Fluorene	ND <	100	ug/Kg	27-OCT-93	30-OCT-93
Phenanthrene	ND <	250	ug/Kg	27-0CT-93	30-OCT-93
Anthracene	ND <	250	ug/Kg	27-0CT-93	30-OCT-93
Fluoranthene	ND <	50.	ug/Kg	27-0CT-93	30-OCT-93
Pyrene	ND <	50.	ug/Kg	27-0CT-93	30-OCT-93
Benzo(a)Anthracene	ND <	50.	ug/Kg	27-0CT-93	30-OCT-93
Chrysene	ND <	50.	ug/Kg	27-0CT-93	30-OCT-93
<pre>Benzo(b)Fluoranthene</pre>	ND <	25.	ug/Kg	27-0CT-93	30-OCT-93
Benzo(k)Fluoranthene	ND <	25.	ug/Kg	27-0CT-93	30-OCT-93
Benzo(a)Pyrene	ND <	25.	ug/Kg	27-0CT-93	30-OCT-93
Dibenz(ah)Anthracene	ND <	50.	ug/Kg	27-0CT-93	30-OCT-93
Benzo(ghi)Perylene	ND <	50.	ug/Kg	27-0CT-93	30-OCT-93
Indeno(123cd)Pyrene	ND <	50.	ug/Kg	27-0CT-93	30-OCT-93
- Surrogate:	- -				
2-Fluorobiphenyl	113.	-	x	27-0CT-93	30-OCT-93
Benzo(e)Pyrene	65.3	-	ž	27-0CT-93	30-OCT-93

ANALYTICAL DATA REPORT

Prepared for: Dames & Noore-Sacramento Project Id: 00173-076-044 UPRR-SACTO Sample Id: ATB-25-4.0-5.5 Lab Id: L9310211-12

Comments:

Collected: 20-OCT-93 Received: 22-OCT-93 Reported: 04-NOV-93

Parameter Value Limit Units Extracted Analyzed

8015DS			
Diesel		ND	<
•	•		

5.0 mg/Kg 29-0CT-93 02-NOV-93 2100 mylky kerosone

•

None

.

н н н п

. · ·

D&M Laboratories

ANALYTICAL DATA REPORT

s

Prepared for: Dames & Moore-Sacramento Project Id: 00173-076-044 UPRR-SACTO Sample Id: ATB-25-9.0-10.0 Lab Id: L9310211-13 Collected: 20-OCT-93 Received: 22-OCT-93 Reported: 04-NOV-93

Parameter Value Limit Units Extracted Analyzed

801505		6001	mg/Kg	DSEME	
Diesel	ND <	5.0	mg/Kg	01-NOV-93	01-NOV-93
Comments:	None		-		
8310s					
Naphthalene	ND <	100	ug/Kg	27-oct-93	30-OCT-93
Acenaphthylene	ND <	200	ug/Kg	27-OCT-93	30-OCT-93
Acenaphthene	. ND <	200	ug/Kg	27-OCT-93	30-OCT-93
Fluorene	ND <	20.	ug/Kg	27-OCT-93	30-OCT-93
Phenanthrene	ND <	50.	ug/Kg	27-001-93	30-OCT-93
Anthracene	ND <	50.	ug/Kg	27-001-93	30-OCT-93
Fluoranthene	ND <	10.	ug/Kg	27-0CT-93	30-OCT-93
Pyrene	ND <	10.	ug/Kg	27-001-93	30-OCT-93
Benzo(a)Anthracene	ND <	10.	ug/Kg	27-0CT-93	30-OCT-93
Chrysene	ND <	10.	ug/Kg	27-OCT-93	30-OCT-93
Benzo(b)Fluoranthene	ND <	5.0	ug/Kg	27-OCT-93	30-OCT-93
Benzo(k)Fluoranthene	ND <	5.0	ug/Kg	27-OCT-93	30-OCT-93
Benzo(a)Pyrene	ND <	5.0	ug/Kg	27-001-93	30-OCT-93
Dibenz(ah)Anthracene	ND <	10.	ug/Kg	27-OCT-93	30-OCT-93
Benzo(ghi)Perylene	ND <	10.	ug/Kg	27-OCT-93	30-OCT-93
Indeno(123cd)Pyrene	ND <	10.	ug/Kg	27-0CT-93	30-0CT-93
- Surrogate:	-				
2-Fluorobiphenyl	87.9	-	x	27-OCT-93	30-OCT-93
Benzo(e)Pyrene	110.	-	x	27-OCT-93	30-0CT-93
Comments:	- None				
Comments:	None				

:

Value

ANALYTICAL DATA REPORT

Linit

Units

Prepared for: Dames & Moore-Sacramento Project Id: 00173-076-044 UPRR-SACTO Sample Id: ATB-25-14.0-15.0 Lab Id: L9310211-14

Parameter

Collected: 20-OCT-93 Received: 22-OCT-93 Reported: 04-NOV-93

Extracted Analyzed

8015DS	8	/	oo mgi	The Kerr	Sence 29-0¢T-93	
Diesel	ND	<	5.0	mg/Kg	29-0CT-93	29-OCT-
- Comments:	None					
8310s	š					
Naphthalene	ND	<	100	ug/Kg	27-OCT-93	30-0CT-
Acenaphthylene	ND	<	200	ug/Kg	27-OCT-93	30-OCT-
Acenaphthene	ND	<	200	ug/Kg	27-OCT-93	30-0CT-
Fluorene	ND	<	20.	ug/Kg	27-OCT-93	30-0CT-
Phenanthrene	ND	<	50.	ug/Kg	27-OCT-93	30-OCT-
Anthracene	ND		50.	ug/Kg j	27-OCT-93	30-OCT-
Fluoranthene	ND	<	10.	ug/Kg	27-OCT-93	30-0CT-
Pyrene	ND	<	10.	ug/Kg	27-OCT-93	30-OCT-
Benzo(a)Anthracene	ND		10.	ug/Kg (27-OCT-93	30-OCT-
Chrysene	ND		10.	ug/Kg	27-OCT-93	30-0CT-
Benzo(b)Fluoranthene	ND		5.0	ug/Kg	27-OCT-93	30-0CT-
Benzo(k)Fluoranthene	ND		5.0	ug/Kg	27-OCT-93	
Benzo(a)Pyrene	ND		5.0	ug/Kg	27-OCT-93	30-0CT-
Dibenz(ah)Anthracene	ND		10.	ug/Kg	27-OCT-93	30-0CT-
Benzo(ghi)Perylene	ND		10.	ug/Kg	27-OCT-93	30-OCT-
Indeno(123cd)Pyrene -	- ND	<	10.	ug/Kg	27-OCT-93	30-0CT-
Surrogate:	-					
2-Fluorobiphenyl	92.	7	-	X X	27-OCT-93	30-OCT-
Benzo(e)Pyrene	111.		-	x	27-OCT-93	30-0CT-

D&M Laboratories ANALYTICAL DATA REPORT Prepared for: Dames & Moore-Sacramento Project Id: 00173-076-044 UPRR-SACTO Sample Id: ATB-25-19.0-20.0 Lab Id: L9310211-15 Collected: 20-OCT-93 Received: 22-OCT-93 Reported: 04-NOV-93 Parameter Value Limit Units Extracted Analyzed 8015DS Diesel ND < 5.0 mg/Kg 29-0CT-93 29-0CT-93 Comments: None

ġ

Prepared for:	Dames & Moore-Sacramento		Laboratories CAL DATA REPORT	Collected:	20-001-93	
Project Id: Sample Id: Lab Id:	00173-076-044 UPRR-SACTO ATB-25-24.0-25.5 L9310211-16			Received: Reported:	22-0CT-93 04-NOV-93	
	Paremeter	Value	Linit Units	Extracted Analyzed		
<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u></u>				
	8015DS Diesel	ND <	5.0 mg/k	g 01-NOV-93 01-NOV-9	3	
	- Comments:	- None		· · · · · · · · · · · · · · · · · · ·	-	9-6, 200 1-6, 200 1-7
				,		
				. •		
	•					
		. '				
				、		
			•			
	· ·					
					· · ·	and the second

and the second second second

A State of the second

ľ		D&M La	aboratories				
Prepared for: Project Id: Sample Id: Lab Id:	Dames & Moore-Sacramento 00173-076-044 UPRR-SACTO ATB-26-14.0-15.0 L9310211-19	ANALYTIC	AL DATA REPO	RT		Collected: Received: Reported:	22-0CT-93
_	Parameter	Value	Linit	Units	Extracted	Anel yzed	
	801505						
	Diesel - Comments:	ND < - None	5.0	mg/Kg	29-OCT-93	29-OCT-93	
-	Connerity;	NOR	· ·				
9							
,							
		_ ·					
•							
			•				
·							
	· .						·····

ANALYTICAL DATA REPORT

Prepared for: Dames & Moore-Sacramento Project Id: 00173-076-044 UPRR-SACTO Sample Id: ATB-26-19.0-20.5 Lab Id: L9310211-17

1

I

Collected: 20-OCT-93 Received: 22-OCT-93 Reported: 04-NOV-93

Parameter Value Limit Units Extracted Analyzed

Diesel	ND	<	5.0	mg/Kg	29-0CT-93	29-0CT-93
Comments:	None				١	
83105						
Naphthalene	ND	<	100	ug/Kg	27-OCT-93	30-OCT-93
Acenaphthylene	ND	<	200	ug/Kg	27-0CT-93	30-OCT-93
Acenaphthene	ND	<	200	ug/Kg	27-0CT-93	30-OCT-93
Fluorene	ND	<	20.	ug/Kg	27-0CT-93	30-OCT-93
Phenanthrene	ND	<	50. `	ug/Kg	27-001-93	30-OCT-93
Anthracene	ND	<	50.	ug/Kg	27-OCT-93	30-OCT-93
Fluoranthene	ND	<	10.	ug/Kg	27-OCT-93	30-OCT-93
Pyrene	ND	<	10.	ug/Kg	27-001-93	30-OCT-93
Benzo(a)Anthracene	ND	<	10.	ug/Kg	27-OCT-93	30-OCT-93
Chrysene	ND	<	10.	ug/Kg	27-OCT-93	30-OCT-93
Benzo(b)Fluoranthene	ND	<	5.0	ug/Kg	27-OCT-93	30-OCT-93
Benzo(k)Fluoranthene	ND	<	5.0	ug/Kg	27-OCT-93	30-OCT-93
Benzo(a)Pyrene	ND	<	5.0	ug/Kg	27-OCT-93	30-OCT-93
Dibenz(ah)Anthracene	ND	<	10.	ug/Kg	27-OCT-93	30-OCT-93
Benzo(ghi)Perylene	ND	<	10.	ug/Kg	27-OCT-93	30-OCT-93
Indeno(123cd)Pyrene	ND	<	10.	ug/Kg	27-OCT-93	30-0CT-93
-	-					
Surrogate:	- 91.5	=	_	*	27-001-93	30-OCT-93
2-Fluorobiphenyl		2	-	X X	27-0CT-93	30-001-93
Benzo(e)Pyrene	112.		-	A .	21-001-93	20-001-83

ANALYTICAL DATA REPORT

Prepared for: Dames & Moore-Sacramento Project Id: 00173-076-044 UPRR-SACTO Sample Id: ATB-26-24.0-25.5 Lab Id: L9310211-18

Ĵ

J

Collected: 20-OCT-93 Received: 22-OCT-93 Reported: 04-NOV-93

 Parameter
 Value
 Limit
 Units
 Extracted Analyzed

 8015ps
 0iesel
 ND < 5.0 mg/Kg</td>
 29-OCT-93
 29-OCT-93

 Comments:
 None

ANALYTICAL DATA REPORT

Prepared for: Dames & Moore-Sacramento Project Id: 00173-076-044 UPRR-SACTO Sample Id: ATB-27-13.5-15.0 Lab Id: L9310211-22

Collected: 20-OCT-93 Received: 22-OCT-93 Reported: 04-NOV-93

ANALYTICAL DATA REPORT

Prepared for: Dames & Moore-Sacramento Project Id: 00173-076-044 UPRR-SACTO Sample Id: ATB-27-18.5-19.0 Lab Id: L9310211-20

وسنعور

and distant

4

Collected: 20-OCT-93 Received: 22-OCT-93 Reported: 04-NOV-93

Parameter Value Limit Units Extracted Analyzed

Diesel	ND	<	5.0	mg/Kg	29-OCT-93	29-OCT-93
Comments:	None			•		
8310s						
Naphthalene	ND	<	100	ug/Kg	27-0CT-93	30-OCT-93
Acenaphthylene	ND	<	200	ug/Kg	27-OCT-93	30-OCT-93
Acenaphthene	NÐ	<	200	ug/Kg	27-OCT-93	30-OCT-93
Fluorene	ND	<	20.	ug/Kg	27-OCT-93	30-OCT-9
Phenanthrene	ND	<	50.	ug/Kg	27-0CT-93	30-OCT-9
Anthracene	ND	<	50.	ug/Kg	27-OCT-93	30-001-9
Fluoranthene	ND	<	10.	ug/Kg	27-OCT-93	30-OCT-9
Pyrene	ND	<	10.	ug/Kg	27-OCT-93	30-OCT-9
Benzo(a)Anthracene	ND	<	10.	ug/Kg	27-OCT-93	30-OCT-93
Chrysene	ND	<	10.	ug/Kg	27-OCT-93	30-OCT-93
Benzo(b)Fluoranthene	ND	<	5.0	ug/Kg	27-0CT-93	30-OCT-93
Benzo(k)Fluoranthene	ND	<	5.0	ug/Kg	27-OCT-93	30-OCT-9
Benzo(a)Pyrene	ND	<	5.0	ug/Kg	27-OCT-93	30-OCT-9
libenz(ah)Anthracene	ND	<	10.	ug/Kg	27-0CT-93	30-OCT-9
Benzo(ghi)Perylene	ND	<	10.	ug/Kg	27-OCT-93	30-OCT-9
Indeno(123cd)Pyrene	ND	<	10.	ug/Kg	27-OCT-93	30-OCT-93
-	-					
Surrogate:	-					
2-Fluorobiphenyl	95.0)	•	x	27-0CT-93	30-OCT-93
Benzo(e)Pyrene	108.		-	X	27-OCT-93	30-OCT-93

ANALYTICAL DATA REPORT

Prepared for: Dames & Moore-Sacramento Project Id: 00173-076-044 UPRR-SACTO Sample Id: ATB-27-23.5-25.0 Lab Id: L9310211-21

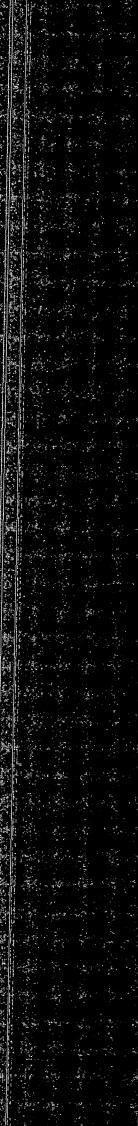
l

l

Collected: 20-OCT-93 Received: 22-OCT-93 Reported: 04-NOV-93

80150)\$							
Diese -		•	ND <	5.0	mg/Kg	27-OCT-93	27-001-93	
Comm	ents:		None					
		•						
							-	
		·						
					•			
,								
								-
							•	

ANALYTICAL DATA REPORT


Prepared for: Dames & Moore-Sacramento Project Id: Sample Id: 00173-076-044 UPRR-SACTO ATB-21W Lab Id: L9310211-24

Collected: 18-OCT-93 Received: 22-OCT-93 Reported: 05-NOV-93

Value Limit Units Extracted Analyzed Paremeter 8015DW Diesel 1.1 0.25 mg/L 27-OCT-93 28-OCT-93 See Labnote 15. Comments: . 8310W 25-0CT-93 28-0CT-93 25-0CT-93 28-0CT-93 Naphthalene ND < 5.0 ug/L ND < Acenaphthylene 10. ug/L 25-0CT-93 28-0CT-93 25-0CT-93 28-0CT-93 Acenaphthene ND < 10. ug/L 1.0 2.5 2.5 0.50 0.50 ND < Fluorene ug/L 25-0CT-93 25-0CT-93 25-0CT-93 25-0CT-93 ND < 28-0CT-93 Phenanthrene ug/L ND < ND < 28-0CT-93 28-0CT-93 28-0CT-93 ug/L Anthracene Fluoranthene ug/L ND < ug/L Pyrene 0.50 25-0CT-93 28-0CT-93 25-0CT-93 28-0CT-93 25-0CT-93 28-0CT-93 25-0CT-93 28-0CT-93 Benzo(a)Anthracene ND < ug/L ND < ND < Chrysene ug/L 0.25 0.25 0.25 Benzo(b)Fluoranthene ug/L 25-0CT-93 28-0CT-93 25-0CT-93 28-0CT-93 25-0CT-93 28-0CT-93 25-0CT-93 28-0CT-93 25-0CT-93 28-0CT-93 ND < ND < ND < Benzo(k)Fluoranthene ug/L Benzo(a)Pyrene Dibenz(ah)Anthracene ug/L 0.50 ug/L Benzo(ghi)Perylene ug/L ND < Indeno(123cd)Pyrene ND < 0.50 Ug/L 25-OCT-93 28-OCT-93 Surrogate: 2-Fluorobiphenyl 104. % Recovery 25-0CT-93 28-0CT-93 Benzo(e)Pyrene 109. % Recovery 25-0CT-93 28-0CT-93 Comments: None

4. F. F.

for the second

2

D&M Laboratories

ANALYTICAL DATA REPORT

Prepared for: Dames & Moore-Sacramento Project Id: 00173-076-044 UPRR-SACTO Sample Id: ATB-22W Lab Id: L9310211-25 Collected: 18-OCT-93 Received: 22-OCT-93 Reported: 05-NOV-93

Paremeter Value Limit Units Extracted Analyzed

8015DW

801508						
Diesel	0.	2 9	0.25	mg/L	27-0CT-93	28-OCT-93
- Comments:	- See la	bnote	e 15.			
•	-					
8310W	·		•			
Naphthalene	ND	<	5.0	ug/L	25-OCT-93	28-OCT-93
Acenaphthylene	ND	<	10.	ug/L	25-OCT-93	28-OCT-93
Acenaphthene	ND	<	10.	ug/L	25-0CT-93	28-OCT-93
Fluorene	ND	<	1.0	ug/L	25-OCT-93	28-OCT-93
Phenanthrene	ND	<	2.5	ug/L	25-0CT-93	28-OCT-93
Anthracene	ND	<	2.5	ug/L	25-0CT-93	28-OCT-93
Fluoranthene	ND	<	0.50	ug/L	25-0CT-93	28-OCT-93
Pyrene	ND	<	0.50	ug/L	25-OCT-93	28-OCT-93
Benzo(a)Anthracene	ND	<	0.50	ug/L	25-0CT-93	28-OCT-93
Chrysene	ND	<	0.50	ug/L	25-0CT-93	28-OCT-93
Benzo(b)Fluoranthene	ND	<	0.25	ug/L	25-0CT-93	28-0CT-93
Benzo(k)Fluoranthene	ND	<	0.25	ug/L	25-OCT-93	28-OCT-93
Benzo(a)Pyrene	ND	<	0.25	ug/L	25-0CT-93	28-0CT-93
Dibenz(ah)Anthracene	ND	<	0.50	ug/L	25-0CT-93	28-OCT-93
Benzo(ghi)Perylene	ND	<	0.50	ug/L	25-0CT-93	28-OCT-93
Indeno(123cd)Pyrene	ND	<	0.50	ug/L	25-0CT-93	28-OCT-93
- Surrogate:	•					
2-Fluorobiphenyi	103.		-	X Recovery	25-0CT-93	28-0CT-93
Benzo(e)Pyrene	116.		-	X Recovery		28-OCT-93
- Comments:	- None		,			

ANALYTICAL DATA REPORT

Prepared for: Dames & Moore-Sacramento Project Id: 00173-076-044 UPRR-SACTO Sample Id: ATB-23W Lab Id: L9310211-26

Collected: 19-OCT-93 Received: 22-OCT-93 Reported: 05-NOV-93

Parameter Value Limit Units Extracted Analyzed

80150W

liesel	N) <	0.25	mg/L	27-001-93	28-0CT-93
Comments:	See la	abnote	15.			
	•					
3310W						
laphthalene) <	5.0	ug/L	26-0CT-93	28-OCT-93
Acenaphthylene	N	-	10.	ug/L	26-OCT-93	28-0CT-93
Acenaphthene	N	-	10.	ug/L	26-OCT-93	28-0CT-93
luorene	N	-	1.0	ug/L	26-OCT-93	28-0CT-93
Phenanthrene	N) <	2.5	ug/L	26-0CT-93	28-0CT-93
Inthracene) <	2.5	ug/L	26-0CT-93	28-0CT-93
luoranthene	N) <	0.50	ug/L	26-0CT-93	28-0CT-93
yrene ·	N) <	0.50	ug/L	26-0CT-93	28-0CT-93
Senzo(a)Anthracene	N) <	0.50	ug/L	26-0CT-93	28-0CT-93
Chrysene	N) <	0.50	ug/L	26-0CT-93	28-0CT-93
Senzo(b)Fluoranthene	N) <	0.25	ug/L	26-0CT-93	28-0CT-93
Benzo(k)Fluoranthene	N) <	0.25	ug/L	26-0CT-93	28-0CT-93
Benzo(a)Pyrene	N) <	0.25	ug/L	26-0CT-93	28-0CT-93
)ibenz(ah)Anthracene	N	> <	0.50	ug/L	26-0CT-93	28-0CT-93
Benzo(ghi)Perylene	· N	D <	0.50	ug/L	26-0CT-93	28-0CT-93
Indeno(123cd)Pyrene	- 11) <	0.50	ug/L	26-0CT-93	28-OCT-93
Surrogate:	-					
2-Fluorobiphenyl	87	.1	-	% Recovery	26-0CT-93	28-0CT-93
Senzo(e)Pyrene	114	-	-	% Recovery		28-0CT-93
Comments:	- None					

ANALYTICAL DATA REPORT

Prepared for: Dames & Moore-Sacramento Project Id: 00173-076-044 UPRR-SACTO Sample Id: ATB-24W Lab Id: L9310211-27

Star Star

Collected: 19-OCT-93 Received: 22-OCT-93 Reported: 05-NOV-93

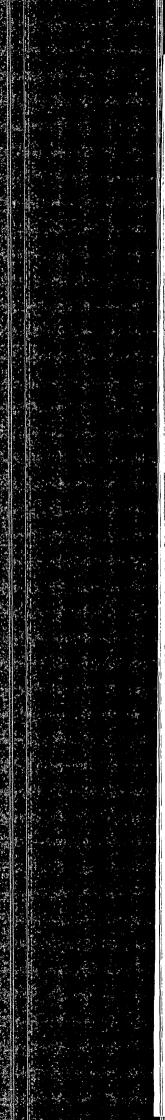
Parameter Value Limit Units Extracted Analyzed

Acenaphthylene ND < 10. ug/L 26-0CT-93 28-0CT-93 Acenaphthene ND < 10. ug/L 26-0CT-93 28-0CT-93 Fluorene ND < 1.0 ug/L 26-0CT-93 28-0CT-93 Phenanthrene ND < 1.0 ug/L 26-0CT-93 28-0CT-93 Phenanthrene ND < 1.0 ug/L 26-0CT-93 28-0CT-93 Anthracene ND < 2.5 ug/L 26-0CT-93 28-0CT-93 Anthracene ND < 0.50 ug/L 26-0CT-93 28-0CT-93 Pyrene ND < 0.50 ug/L 26-0CT-93 28-0CT-93 Benzo(a)Anthracene ND < 0.50 ug/L 26-0CT-93 28-0CT-93 Chrysene ND < 0.50 ug/L 26-0CT-93 28-0CT-93 Benzo(b)Fluoranthene ND < 0.50 ug/L 26-0CT-93 28-0CT-93 Benzo(a)Pyrene ND < 0.25 ug/L 26-0CT-93 28-0CT-93 Benzo(a)Pyrene ND < 0.25 ug/L 26-0CT-93 28-0CT-93 Benzo(a)Pyrene ND < 0.50 ug/L 26-0CT-93 28-0CT-93 Benzo(a)Pyrene <td< th=""><th>Diesel</th><th>2.9</th><th>0.25</th><th>mg/L</th><th>27-0CT-93</th><th>28-0CT-93</th></td<>	Diesel	2.9	0.25	mg/L	27-0CT-93	28-0CT-93
Naphthalene ND <	- Comments: -	- See lab -	note 15			
Accmaphthylene ND < 10. ug/L 26-0CT-93 28-0CT-93 Accmaphthene ND < 10. ug/L 26-0CT-93 28-0CT-93 Accmaphthene ND < 1.0 ug/L 26-0CT-93 28-0CT-93 Fluorene ND < 1.0 ug/L 26-0CT-93 28-0CT-93 Phenanthrene ND < 2.5 ug/L 26-0CT-93 28-0CT-93 Anthracene ND < 2.5 ug/L 26-0CT-93 28-0CT-93 Pyrene ND < 0.50 ug/L 26-0CT-93 28-0CT-93 Benzo(a)Anthracene ND < 0.50 ug/L 26-0CT-93 28-0CT-93 Chrysene ND < 0.50 ug/L 26-0CT-93 28-0CT-93 28-0CT-93 Benzo(a)Anthracene ND < 0.50 ug/L 26-0CT-93 28-0CT-93 28-0CT-93 Benzo(b)Fluoranthene ND < 0.25 ug/L 26-0CT-93 28-0CT-93 Benzo(b)Fluoranthene ND < 0.25 ug/L 26-0CT	- 8310w	-	· .			
Acenaphthylene ND < 10. ug/L 26-0CT-93 28-0CT-93 Acenaphthene ND <	Naphthalene	ND	< 5.0	ug/L	26-0CT-93	28-0CT-93
Acenaphthene ND < 10. ug/L 26-0CT-93 28-0CT-93 Fluorene ND <		NÐ	< 10.	ug/L	26-0CT-93	28-0CT-93
Fluorene ND < 1.0 ug/L 26-0CT-93 28-0CT-93 Phenanthrene ND <		ND	< 10.	ug/L	26-0CT-93	28-0CT-93
Anthracene ND <		ND		ug/L	26-0CT-93	28-0CT-93
Rituration ND <	Phenanthrene	ND		ug/L	26-0CT-93	28-0CT-93
Pyrene ND < 0.50 ug/L 26-0CT-93 28-0CT-93 Benzo(a)Anthracene ND <	Anthracene	ND	< 2.5	ug/L	26-0CT-93	28-0CT-93
Pyrene ND < 0.50 ug/L 26-0CT-93 28-0CT-93 Benzo(a)Anthracene ND <	Fluoranthene	ND	< 0.50	ug/L	26-0CT-93	28-0CT-93
Benzo(a)Anthracene ND < 0.50 ug/L 26-0CT-93 28-0CT-93 Chrysene ND <		ND		ug/L	26-0CT-93	28-OCT-93
Chrysene ND < 0.50 ug/L 26-0CT-93 28-0CT-93 Benzo(b)Fluoranthene ND <		ND		ug/L	26-0CT-93	28-0CT-93
Benzo(b)Fluoranthene ND < 0.25 ug/L 26-0CT-93 28-0CT-93 28		ND	< 0.50	ug/L	26-0CT-93	28-0CT-93
Benzo(a)Pyrene ND < 0.25 ug/L 26-0CT-93 28-0CT-93 Dibenz(ah)Anthracene ND <		ND	< 0.25	ug/L	26-0CT-93	28-0CT-93
Benzo(a)Pyrene ND < 0.25 ug/L 26-0CT-93 28-0CT-93 Dibenz(ah)Anthracene ND <	Benzo(k)Fluoranthene	ND	< 0.25	ug/L	26-0CT-93	28-0CT-93
Dibenz(ah)Anthracene ND <		ND	< 0.25	ug/L	26-0CT-93	28-0CT-93
Benzo(ghi)Perylene ND < 0.50 ug/L 26-0CT-93 28-0CT-93 Indeno(123cd)Pyrene ND <		ND	< 0.50	ug/L	26-0CT-93	28-0CT-93
Indeno(123cd)Pyrene ND < 0.50 ug/L 26-0CT-93 28-0CT-93 		ND	< 0.50	ug/L	26-0CT-93	28-0CT-93
2-Fluorobiphenyl 99.1 - % Recovery 26-0CT-93 28-0CT-93 Benzo(e)Pyrene 110. - % Recovery 26-0CT-93 28-0CT-93		ND	< 0.50	ug/L	26-0CT-93	28-OCT-93
2-Fluorobiphenyi 99.1 - % Recovery 26-0CT-93 28-0CT-93 Benzo(e)Pyrene 110. - % Recovery 26-0CT-93 28-0CT-93	•	•				
Benzo(e)Pyrene 110 % Recovery 26-0CT-93 28-0CT-93		•		~ ~	A (A A A A A A A A A A	
•			•			
•	Benzo(e)Pyrene	110.	-	% Recovery	26-0CT-93	28-OCT-93
Comments: . None	•	- None				

, 		D2N 1	aboratories		<u></u>		
1			AL DATA REPORT				
Project Id Sample Id	E Dames & Moore-Sacramento CO173-076-044 UPRR-SACTO ATB-26W L9310211-29 Parameter	Value	Limit Units		Collected: 20- Received: 22- Reported: 10- Analyzed	OCT-93	
	8015DW Diesel	ND <	0.50 mg/L	27-001-93	28-0CT-93		
	Comments:	- See labnote		. <u>.</u>			
	•	-					
	8310W		·				
	Naphthalene Acenaphthylene	ND < .	10. ug/L 20. ug/L	. 26-0CT-93	28-0CT-93 28-0CT-93		
)	Acenaph thene Fluorene	ND < ND<-	20. ug/L 2.0 ug/L	. 26-0CT-93	28-OCT-93 28-OCT-93		
	Phenanthrene Anthracene	0.73 ND <	5.0 > ug/L 5.0 ug/L	. 26-0CT-93 . 26-0CT-93	28-0CT-93 28-0CT-93		
	Fluoranthene Pyrene Banza (a Mathagana	ND < ND < ND <	1.0 ug/L 1.0 ug/L 1.0 ug/L	. 26-OCT-93	28-0CT-93 28-0CT-93 28-0CT-93		
	Benzo(a)Anthracene Chrysene Benzo(b)Fluoranthene	ND < ND < ND <	1.0 ug/L 1.0 ug/L 0.50 ug/L	. 26-001-93	28-0CT-93 28-0CT-93 28-0CT-93		and the second
	Benzo(k)Fluoranthene Benzo(a)Pyrene	ND < ND <	0.50 ug/L 0.50 ug/L	. 26-0CT-93 . 26-0CT-93	28-0CT-93 28-0CT-93		
	Dibenz(ah)Anthracene Benzo(ghi)Perylene	ND < ND <	1.0 ug/L 1.0 ug/L	. 26-0CT-93 . 26-0CT-93	28-0CT-93 28-0CT-93		
·	Indeno(123cd)Pyrene	ND < -	1.0 ug/l	. 26-0CT-93	28-OCT-93		
	Surrogate: 2-Fluorobiphenyl Benzo(e)Pyrene	102. 110.	- % Re	covery 26-OCT-93 covery 26-OCT-93	28-0CT-93 28-0CT-93		
	- Comments:	- None					
							an a
							and the second
	·						en sant for
		,					
			•				
							the second second
		,					
		<u></u>					
	•						
						<i>,</i>	

1.4.5

And a second


ANALYTICAL DATA REPORT

Prepared for: Dames & Noore-Sacramento Project Id: 00173-076-044 UPRR-SACTO Sample Id: ATB-27W Lab Id: L9310211-30

Collected: 20-OCT-93 Received: 22-OCT-93 Reported: 05-NOV-93

Parameter Value Limit Units Extrected Analyzed

Diesel	×. NI) <	0.25	mg/L	27-001-93	28-0CT-93
- Comments:	See la	abnot	e 15.			
-	-					
B310W		ч.				
Naphthalene	NC) <	5.0	ug/L	26-0CT-93	28-OCT-93
Acenaphthylene	N) <	10.	ug/L	26-0CT-93	28-0CT-93
Acenaphthene) <	10.	ug/L	26-0CT-93	28-0CT-93
Fluorene	N) <	1.0	ug/L	26-0CT-93	28-0CT-93
Phenanthrene	N) <	2.5	ug/L	26-0CT-93	28-OCT-93
Anthracene	N) <	2.5	ug/L	26-0CT-93	28-0CT-93
Fluoranthene	N) <	0.50	ug/L	26-0CT-93	28-0CT-93
Pyrene	NE) <	0.50	ug/L	26-0CT-93	28-0CT-93
Benzo(a)Anthracene	N) <	0.50	ug/L	26-0CT-93	28-0CT-93
Chrysene	NE) <	0.50	ug/L	26-0CT-93	28-0CT-93
Benzo(b)Fluoranthene	NE) <	0.25	ug/L	26-0CT-93	28-0CT-93
Benzo(k)Fluoranthene	N) <	0.25	ug/L	26-0CT-93	28-0CT-93
Benzo(a)Pyrene	N) <	0.25	ug/L	26-0CT-93	28-0CT-93
Dibenz(ah)Anthracene	N) <	0.50	ug/L	26-0CT-93	28-OCT-93
Benzo(ghi)Perylene	N) <	0.50	ug/L	26-0CT-93	28-0CT-93
Indeno(123cd)Pyrene	N) <	0.50	ug/L	26-0CT-93	28-0CT-93
- Surrogate:	-					
2-Fluorobiphenyl	87	.3	-	% Recovery	26-0CT-93	28-OCT-93
Benzo(e)Pyrene	109		-	% Recovery		28-0CT-93
•	-					

Prepared for: Project Id: Sample Id: Method Blank Lab Id: WG3060-1

D&M Laboratories

ANALYTICAL DATA REPORT

Reported: 01-NOV-93

Parameter Value Limit Units Extracted Analyzed

TPHIDQ-WARE STREET	eine, F					
Gas	ND	<	0.050	mg/L	27-0CT-93	28-0CT-9
Mineral Spirits	ND	<	0.050	mg/L	27-OCT-93	28-0CT-9
Jet Fuel	ND	<	0.050	mg/L	27-OCT-93	28-0CT-9
Kerosine	ND	<	0.050	mg/L	27-001-93	28-0CT-9
Diesel	` ND	<	0.050	mg/L	27-0CT-93	28-0CT-9
Waste Oil	ND	<	0.50	mg/L	27-OCT-93	28-0CT-9
-	-					
Comments:	None					
-	-					

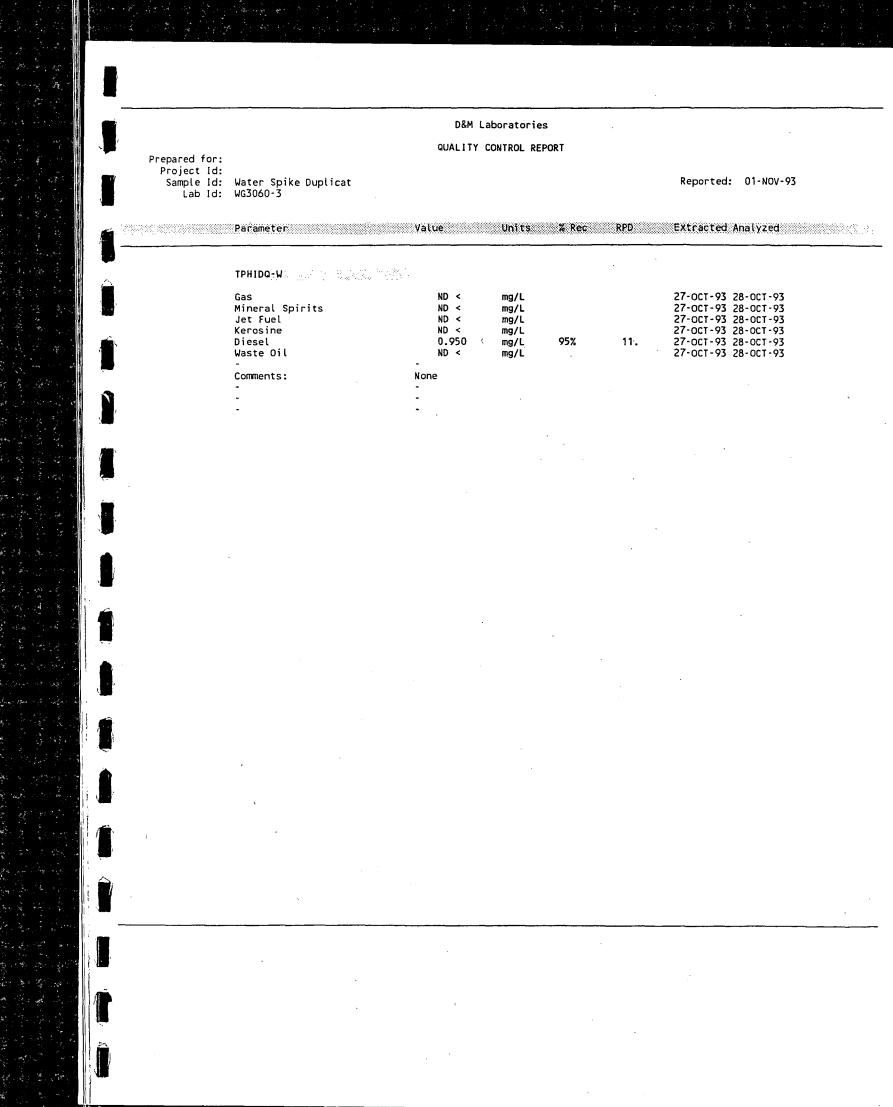
•

QUALITY CONTROL REPORT

Prepared for: Project Id: Sample Id: Water Spike Lab Id: WG3060-2

Ż

Reported: 01-NOV-93

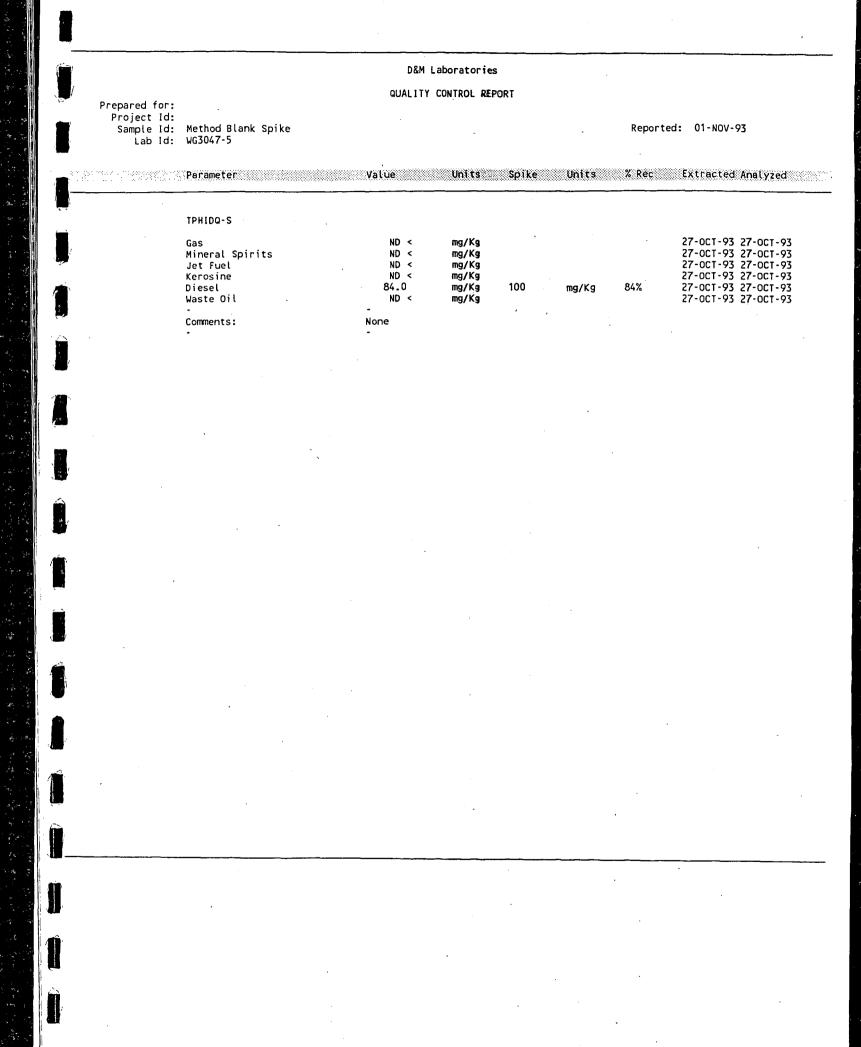

Parameter Value Units Spike Units % Rec Extracted Analyzed

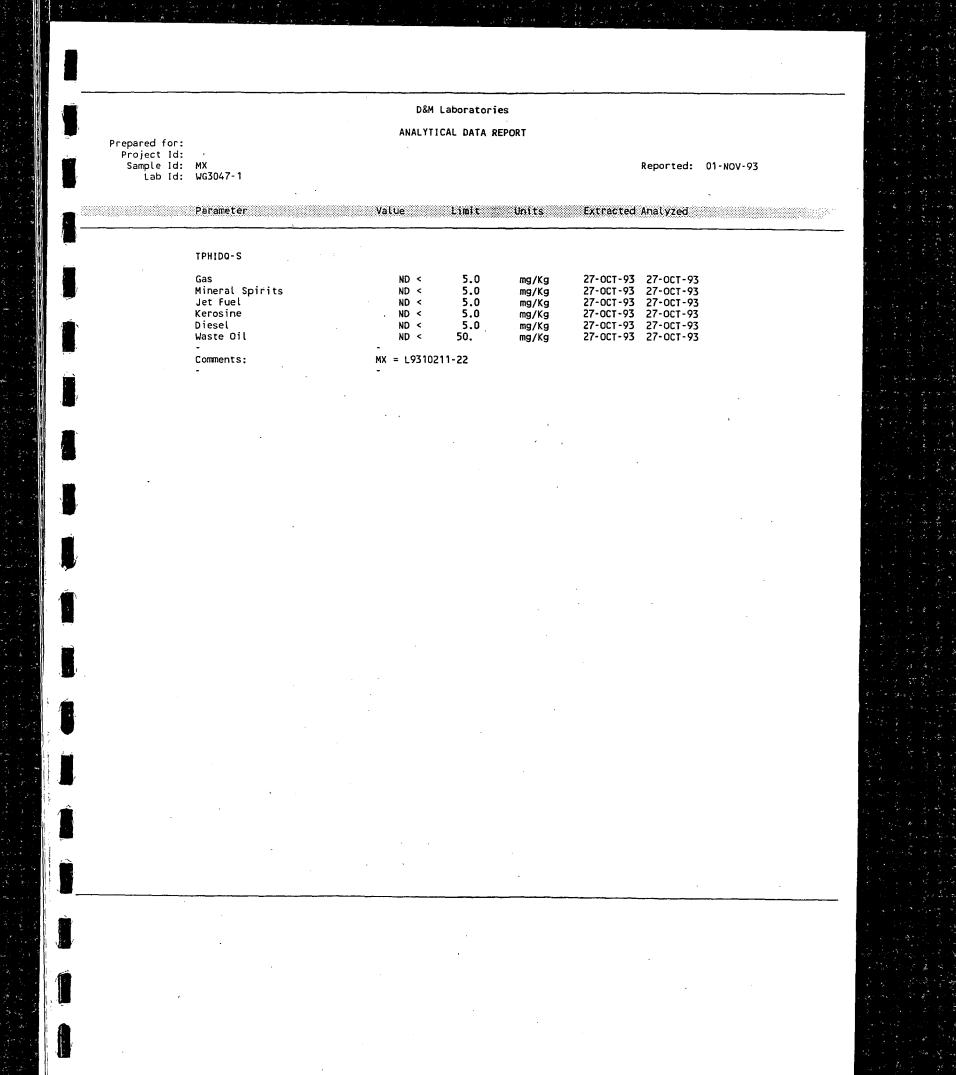
TPHIDQ-W

Mineral Spirits Jet Fuel Kerosine Diesel Waste Oil	ND < ND < ND < 0.850 ND <	mg/L mg/L mg/L mg/L mg/L	1	mg/L	85%	27-0CT-93 28-0CT- 27-0CT-93 28-0CT- 27-0CT-93 28-0CT- 27-0CT-93 28-0CT- 27-0CT-93 28-0CT- 27-0CT-93 28-0CT-
-	• •					
Comments:	None					
•	-					
-	-	-			•	
		-				

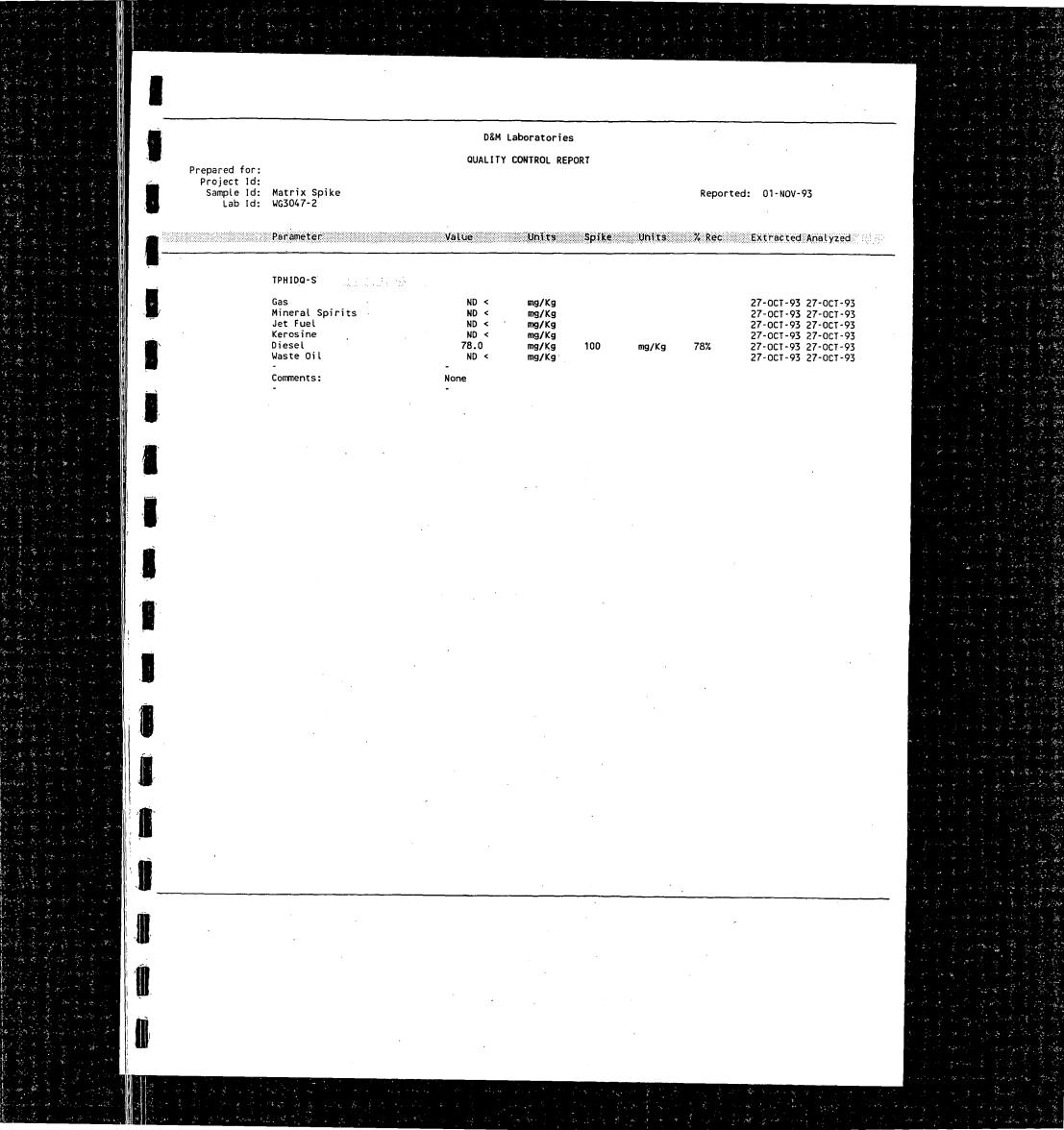
.

.


Prepared for: Project Id: Sample Id: Lab Id: Method Blank WG3047-4 Parameter Value Limit Units Extracted Analyzed TPHIDQ-S Gas Mineral Spirits Jet Fuel Kerosine Diesel Waste Oil ND < Comments: None


· .					
ts	ND < ND < ND < ND < ND < ND <	5.0 5.0 5.0 5.0 5.0 50.	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	27-0CT-93 27-0CT-93 27-0CT-93 27-0CT-93 27-0CT-93 27-0CT-93	27-0CT-93 27-0CT-93 27-0CT-93 27-0CT-93

ANALYTICAL DATA REPORT


D&M Laboratories

Reported: 01-NOV-93

の時代の時代

				aboratorie			
Prepared f Project Sample Lab	or: Id: Id: Matrix Spike Dup Id: WG3047-3		QUALITY	CONTROL RE	PORT		Reported: 01-NOV-93
	Parameter		Value	Units	Z Rec	RPD	Extracted Analyzed
	TPHIDQ-S	un de la					· · · · · · · · · · · · · · · · · · ·
	Gas Mineral Spirits Jet Fuel Kerosine Diesel Waste Oil		ND < ND < ND < ND < 85.0 ND <	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	85%	8.5	27-0CT-93 27-0CT-93 27-0CT-93 27-0CT-93 27-0CT-93 27-0CT-93 27-0CT-93 27-0CT-93 27-0CT-93 27-0CT-93 27-0CT-93 27-0CT-93
	- Comments: -		- None -				
	,						
			,				
				-			
						·	
,				-			
	-						

D&M Laboratories ANALYTICAL DATA REPORT								
Prepared for: Project Id: Sample Id: Lab Id:	WG3100-4	,				ι,	Reported: 03-	NOV-93
	Parameter TPHIDQ-S		Value	Limit 	Units	Extracted	Analyzed	
	Gas Mineral Spirits Jet Fuel Kerosine Diesel Waste Oil		ND < ND < ND < ND < ND < ND <	5.0 5.0 5.0 5.0 5.0 5.0	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	01-NOV-93 01-NOV-93 01-NOV-93 01-NOV-93	01-NOV-93	
	- Comments: -		- None -					
ļ.		·						
1								
			•					
x.								
		-						
)								
i .								
	· .		-					
		·						
		<u></u>				····		

のためである。

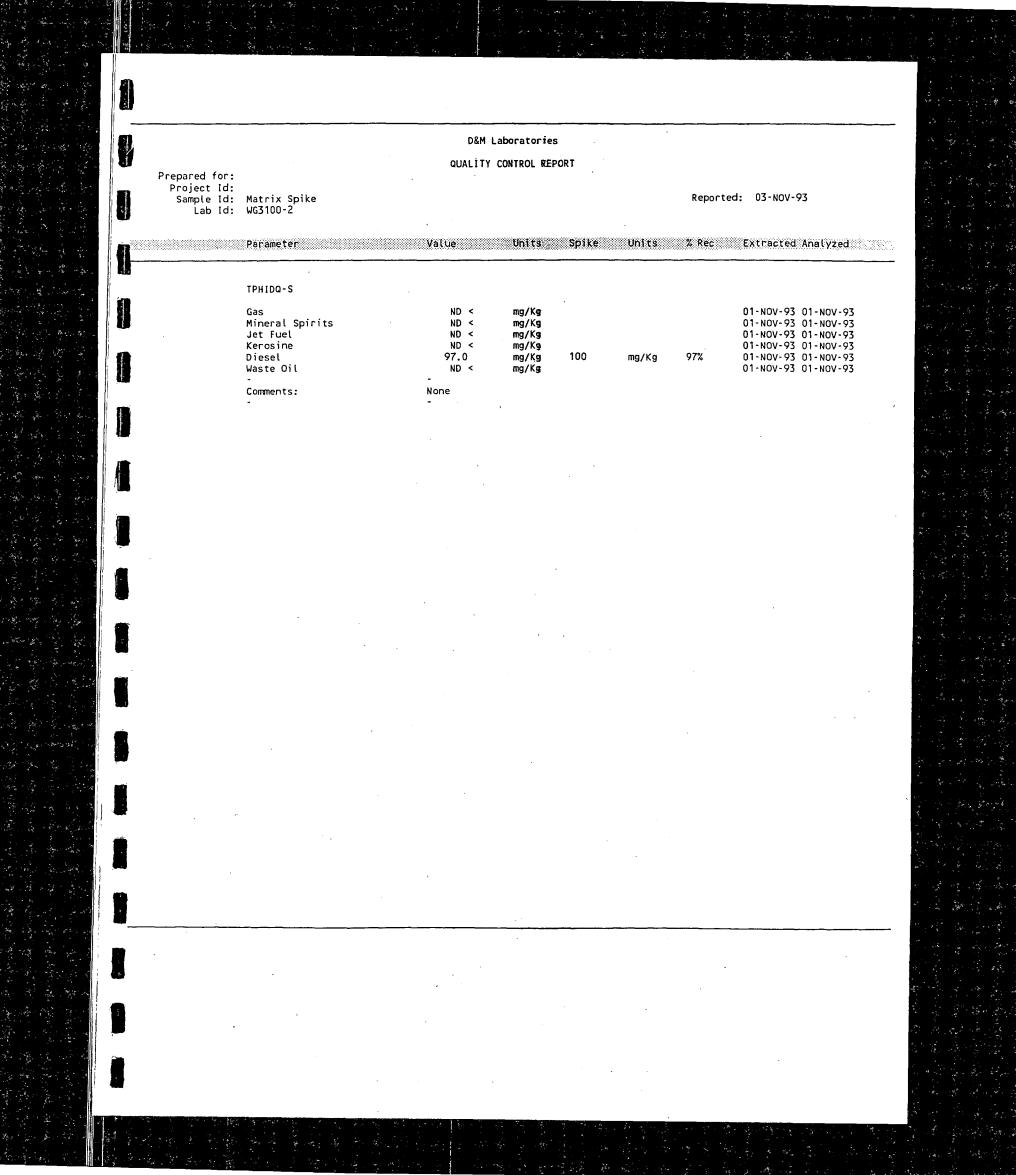
1. 1800 BUD BUD

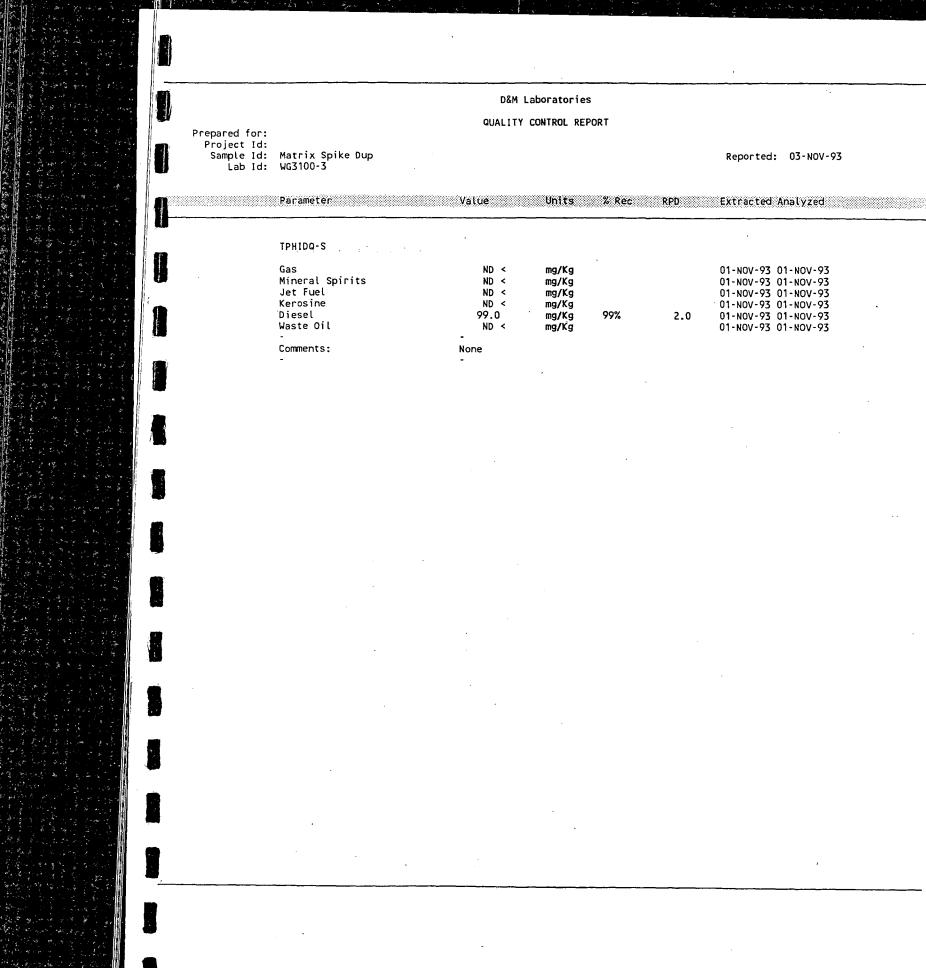
QUALITY CONTROL REPORT

Prepared for: Project Id: Sample Id: Method Blank Spike Lab Id: WG3100-5

Comments:

•


Reported: 03-NOV-93


Parameter Value Units Spike Units % Rec Extracted Analyzed

TPHIDQ-S 01-NOV-93 mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg ND < Gas Mineral Spirits Jet Fuel ND < ND < Kerosine ND < Diesel 71.0 100 mg/Kg 71% Waste Oil ND <

None

			Laboratories CAL DATA REPORT				1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
Preparo Proje Sam	ed for: ect Id: ble Id: MX .ab Id: WG3100-1				Reported: 03-NOV-9	3	
	Parameter	Value	Limit Units	Extracted	Apaluzad		
	······································						an an an air a' stair an
	TPHIDQ-S Gas	ND <	5.0 mg/Kg	01-NOV-93	01-NOV-93		
	Mineral Spirits Jet Fuel Kerosine Diesel	ND < ND < ND < ND <	5.0 mg/Kg 5.0 mg/Kg 5.0 mg/Kg 5.0 mg/Kg 5.0 mg/Kg	01-NOV-93 01-NOV-93 01-NOV-93 01-NOV-93 01-NOV-93	01-NOV-93 01-NOV-93 01-NOV-93 01-NOV-93 01-NOV-93 01-NOV-93		
	Waste Oil - Comments:	ND < - MX = L93102	50. mg/Kg	01-NOV-93	01-NOV-93	. ,	
	-	-					and the second sec
				· •	·		
							reger (1) - strat by adaptions in The state of the state of the state
	· ·		,				and and the second s Second second
							11、新学校的编辑。 19、新学校的编辑。
			· .				
							· · · · · · · · · · · · · · · · · · ·
			,				
	•			•	. •		and we also as a second
	•						

Reported: 03-NOV-93

01-NOV-93 01-NOV-93

D&M Laboratories

mg/Kg

mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg

99%

2.0

ANALYTICAL DATA REPORT

Parameter Value Limit Units Extracted Analyzed

.

Prepared for: Project Id: Method Blank Sample Id: Lab Id: WG3023-4

8310W

Collected: Received: 27-OCT-93 Reported: 03-NOV-93

28-0CT-93

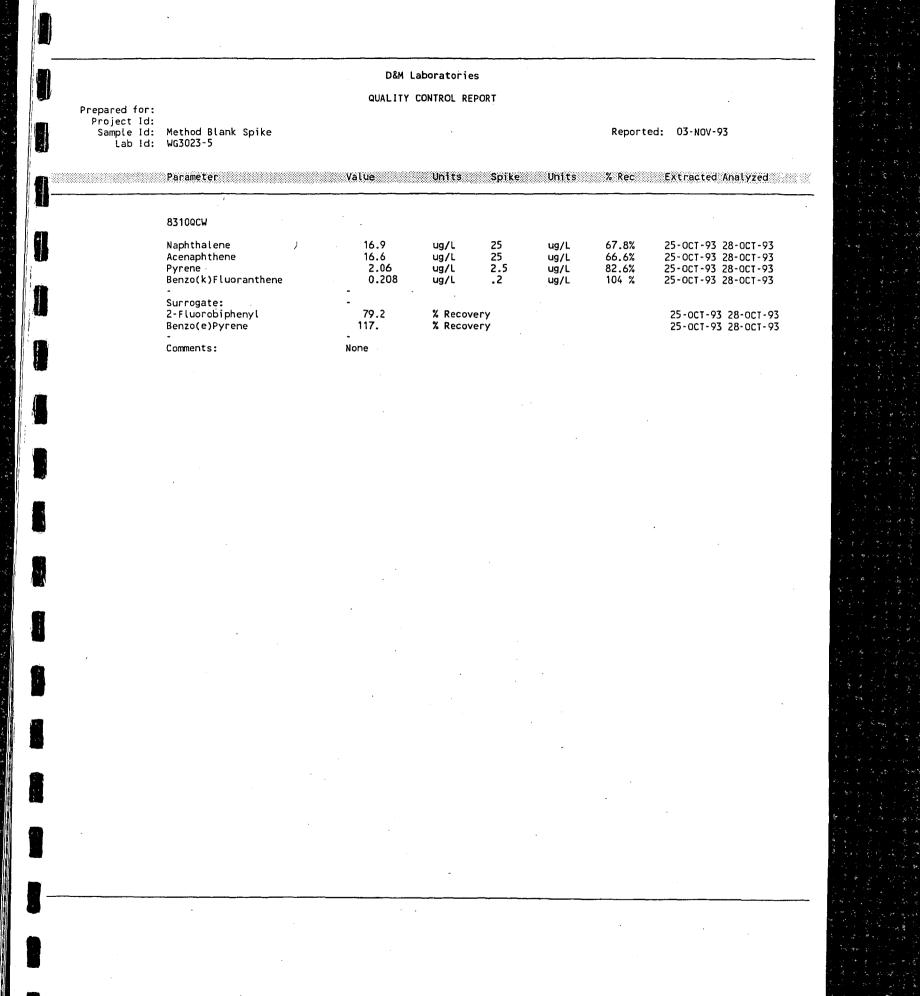
28-0CT-93

28-0CT-93

28-0CT-93

28-0CT-93

25-0CT-93


25-0CT-93

25-OCT-93

25-0CT-93 25-0CT-93

ND < Naphthalene 1.0 ug/L 2.0 Acenaphthylene ND < ug/L Acenaphthene ND < ug/L 0.20 ND < ug/L Fluorene ND < Phenanthrene ug/L 0.50 ND < ug/L Anthracene Fluoranthene Pyr Be

Comments:	None					
•	-		1			
Benzo(e)Pyrene	111.		-	% Recovery	25-0CT-93	28-0CT-93
2-Fluorobiphenyl	104.		-	% Recovery	25-0CT-93	28-0CT-93
Surrogate:	-					
-	-					
Indeno(123cd)Pyrene	ND	<	0.10	ug/L	25-001-93	28-0CT-93
Benzo(ghi)Perylene	ND		0.10	ug/L	25-0CT-93	28-0CT-93
Dibenz(ah)Anthracene	ND		0.10	ug/L	25-0CT-93	28-0CT-93
Benzo(a)Pyrene			0.050	ug/L	25-001-93	28-0CT-93
				•		
Benzo(k)Fluoranthene			0.050	ug/L	25-0CT-93	28-001-93
Benzo(b)Fluoranthene	ND		0.050	ug/L	25-0CT-93	28-0CT-93
Chrysene	ND		0.10	ug/L	25-0CT-93	28-0CT-93
Benzo(a)Anthracene	ND	<	0.10	ug/L	25-0CT-93	28-0CT-93
Pyrene	ND	<	0.10	ug/L	25-001-93	28-0CT-93
Fluoranthene	ND	<	0.10	ug/L	25-001-93	28-OCT-93
Anthracene	ND	<	0.50	ug/L	25-0CT-93	28-OCT-93
Phenanthrene	NU	<	0.50	ug/L	22-061-93	28-001-93

ANALYTICAL DATA REPORT

Prepared for: Project Id: Sample Id: Method Blank Lab Id: WG3023-6

8

l

4. 4.

1

33233

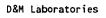
Collected: Received: 01-NOV-93 Reported: 03-NOV-93

8310W Naphthalene ND < 1.0 ug/L 26-0CT-93 28-0CT-93 Acenaphthylene ND < 2.0 ug/L 26-0CT-93 28-0CT-93 Acenaphthene ND < 2.0 ug/L 26-0CT-93 28-0CT-93 Acenaphthene ND < 0.20 ug/L 26-0CT-93 28-0CT-93 Fluorene ND < 0.20 ug/L 26-0CT-93 28-0CT-93 Phenanthrene ND < 0.50 ug/L 26-0CT-93 28-0CT-93 Anthracene ND < 0.50 ug/L 26-0CT-93 28-0CT-93 Pyrene ND < 0.10 ug/L 26-0CT-93 28-0CT-93 Pyrene ND < 0.10 ug/L 26-0CT-93 28-0CT-93 Benzo(a)Anthracene ND < 0.10 ug/L 26-0CT-93 28-0CT-93 Benzo(b)Fluoranthene ND < 0.050 ug/L 26-0CT-93 28-0CT-93 Benzo(b)Fluoranthene ND < 0.050 ug/L 26-0CT-93 28-0CT-93 Benzo(a)Pyrene ND < 0.050 ug/L	Parameter	Value		Limjt	Units	Extracted	Analyzed	
Naphthalene ND <					<u></u>			····
Acenaphthylene ND <	8310W							
Acenaphthene ND < 2.0 ug/L 26-0CT-93 28-0CT-93 Fluorene ND 0.20 ug/L 26-0CT-93 28-0CT-93 Phenanthrene ND 0.50 ug/L 26-0CT-93 28-0CT-93 Anthracene ND 0.50 ug/L 26-0CT-93 28-0CT-93 Fluoranthene ND 0.50 ug/L 26-0CT-93 28-0CT-93 Fluoranthene ND 0.50 ug/L 26-0CT-93 28-0CT-93 Pyrene ND 0.10 ug/L 26-0CT-93 28-0CT-93 Benzo(a)Anthracene ND 0.10 ug/L 26-0CT-93 28-0CT-93 Chrysene ND 0.10 ug/L 26-0CT-93 28-0CT-93 Benzo(b)Fluoranthene ND 0.10 ug/L 26-0CT-93 28-0CT-93 Benzo(k)Fluoranthene ND 0.050 ug/L 26-0CT-93 28-0CT-93 Benzo(k)Fluoranthene ND 0.050 ug/L 26-0CT-93 28-0CT-93 Benzo(k)Fluoranthene ND 0.10 ug/L 26-0CT-93 28-0CT-	Naphthalene	ND	<	1.0	ug/L	26-0CT-93	28-0CT-93	
Fluorene ND < 0.20 ug/L 26-0CT-93 28-0CT-93 Phenanthrene ND <	Acenaphthylene	ND	<	2.0	ug/L	26-0CT-93	28-OCT-93	-
Phenanthrene ND < 0.50 ug/L 26-0CT-93 28-0CT-93 Anthracene ND <	Acenaphthene	ND	<	2.0	ug/L	26-0CT-93	28-OCT-93	
Anthracene ND < 0.50 ug/L 26-0CT-93 28-0CT-93 Fluoranthene ND <	Fluorene	ND	< .	0.20	ug/L	26-0CT-93	28-OCT-93	
Fluoranthene ND < 0.10 ug/L 26-0CT-93 28-0CT-93 Pyrene ND <	Phenanthrene	ND	<	0.50	ug/L	26-OCT-93	28-001-93	
Pyrene ND < 0.10 ug/L 26-0CT-93 28-0CT-93 Benzo(a)Anthracene ND <	Anthracene	ND	<	0.50	ug/L	26-OCT-93	28-OCT-93	
Benzo(a)Anthracene ND < 0.10 ug/L 26-0CT-93 28-0CT-93 Chrysene ND <	Fluoranthene	ND	<	0.10	ug/L	26-0CT-93	28-OCT-93	
Chrysene ND < 0.10 ug/L 26-0CT-93 28-0CT-93 Benzo(b)Fluoranthene ND <	Pyrene	ND	<	0.10	ug/L	26-OCT-93	28-OCT-93	
Benzo(b)Fluoranthene ND < 0.050 ug/L 26-0CT-93 28-0CT-93 Benzo(k)Fluoranthene ND 0.050 ug/L 26-0CT-93 28-0CT-93 Benzo(a)Pyrene ND 0.050 ug/L 26-0CT-93 28-0CT-93 Dibenz(a)Anthracene ND 0.10 ug/L 26-0CT-93 28-0CT-93 Benzo(ghi)Perylene ND 0.10 ug/L 26-0CT-93 28-0CT-93 Indeno(123cd)Pyrene ND 0.10 ug/L 26-0CT-93 28-0CT-93 - - - - - - - Surrogate: - - % Recovery 26-0CT-93 28-0CT-93	Benzo(a)Anthracene	ND	<	0.10	ug/L	26-0CT-93	28-OCT-93	
Benzo(k)Fluoranthene ND < 0.050 ug/L 26-0CT-93 28-0CT-93 Benzo(a)Pyrene ND <	Chrysene	ND	<	0.10	ug/L	26-OCT-93	28-OCT-93	
Benzo(k)Fluoranthene ND < 0.050 ug/L 26-0CT-93 28-0CT-93 Benzo(a)Pyrene ND <	Benzo(b)Fluoranthene	ND	<	0.050	ug/L	26-OCT-93	28-OCT-93	
Dibenz(ah)Anthracene ND < 0.10 ug/L 26-0CT-93 28-0CT-93 Benzo(ghi)Perylene ND <	Benzo(k)Fluoranthene	ND	<	0.050		26-OCT-93	28-OCT-93	
Benzo(ghi)Perylene ND < 0.10 ug/L 26-0CT-93 28-0CT-93 Indeno(123cd)Pyrene ND 0.10 ug/L 26-0CT-93 28-0CT-93 - - - - - Surrogate: - - % Recovery 26-0CT-93 28-0CT-93	Benzo(a)Pyrene	ND	<	0.050	ug/L	26-0CT-93	28-OCT-93	
Indeno(123cd)Pyrene ND < 0.10 ug/L 26-0CT-93 28-0CT-93 - Surrogate: - 2-Fluorobiphenyl 82.1 - % Recovery 26-0CT-93 28-0CT-93	Dibenz(ah)Anthracene	ND	<	0.10	ug/L	26-0CT-93	28-OCT-93	
Indeno(123cd)Pyrene ND < 0.10 ug/L 26-0CT-93 28-0CT-93 - Surrogate: - 2-Fluorobiphenyl 82.1 - % Recovery 26-0CT-93 28-0CT-93	Benzo(ghi)Perylene	. ND	<	0.10	ug/L	26-0CT-93	28-OCT-93	
- Surrogate: - 2-Fluorobiphenyl 82.1 - % Recovery 26-0CT-93 28-0CT-93		ND	<	0.10		26-0CT-93	28-OCT-93	
2-Fluorobiphenyl 82.1 - % Recovery 26-0CT-93 28-0CT-93	-	•			•			
2-Fluorobiphenyl 82.1 - % Recovery 26-0CT-93 28-0CT-93	Surrogate:	-						
		82.1		•	% Recovery	26-0CT-93	28-001-93	
	Benzo(e)Pyrene	115.		-			28-OCT-93	
	Comments:	None						

•

QUALITY CONTROL REPORT

Prepared for: Project Id: Sample Id: Method Blank Spike Lab Id: WG3023-7


10 C - 1

2.5

Reported: 03-NOV-93

Parameter Value Units Spike Units % Rec Extracted Analyzed

8310QCW						
Naphthalene Acenaphthene Pyrene Benzo(k)Fluoranthene -	20.3 20.3 1.87 0.193	ug/L ug/L ug/L ug/L	25 25 2.5 .2	ug/L ug/L ug/L ug/L	81.2% 81.2% 74.7% 96.5%	26-0CT-93 28-0CT-93 26-0CT-93 28-0CT-93 26-0CT-93 28-0CT-93 26-0CT-93 28-0CT-93 26-0CT-93 28-0CT-93
Surrogate: 2-Fluorobiphenyl Benzo(e)Pyrene	- 87.2 115.	% Recov % Recov	•			26-0CT-93 28-0CT-93 26-0CT-93 28-0CT-93
Comments.	None					,

ANALYTICAL DATA REPORT

Prepared for: Project Id: Sample Id: MX Lab Id: WG3023-1

1

14. 1. Em

4

و المحمد ا

Reported: 03-NOV-93

Perameter Value Limit Units Extracted Analyzed

8310W			·			
Naphthalene	ND	<	1.0	ug/L	25-0CT-93	28-0CT-93
Acenaphthylene	ND	<	2.0	ug/L	25-OCT-93	28-0CT-93
Acenaphthene	ND	<	2.0	ug/L	25-0CT-93	28-0CT-93
Fluorene	ND	<	0.20	ug/L	25-0CT-93	28-0CT-93
Phenanthrene	` ND	<	0.50	ug/L	25-0CT-93	28-0CT-93
Anthracene	ND	<	0.50	ug/L	25-0CT-93	28-OCT-93
Fluoranthene	ND	<	0.10	ug/L	25-0CT-93	28-0CT-93
Pyrene	ND	<	0.10	ug/L	25-0CT-93	28-0CT-93
Benzo(a)Anthracene	ND	<	0.10	ug/L	25-0CT-93	28-0CT-93
Chrysene	ND	<	0.10	ug/L	25-0CT-93	28-0CT-93
Benzo(b)Fluoranthene	ND	<	0.050	ug/L	25-0CT-93	28-OCT-93
Benzo(k)Fluoranthene	ND	<٠	0.050	ug/L	25-0CT-93	28-0CT-93
Benzo(a)Pyrene	ND	<	0.050	ug/L	25-OCT-93	28-0CT-93
Dibenz(ah)Anthracene	ND	<	0.10	ug/L	25-OCT-93	28-OCT-93
Benzo(ghi)Perylene	ND	<	0.10	ug/L	25-0CT-93	28-OCT-93
Indeno(123cd)Pyrene	ND	<	0.10	ug/L	25-OCT-93	28-0CT-93
-	•					
Surrogate:	•					
2-Fluorobiphenyl	104.		•	% Recovery	25-OCT-93	28-OCT-93
Benzo(e)Pyrene	. 111.			% Recovery	25-0CT-93	28-0CT-93
Comments:	The MX	is	the MB sample			

QUALITY CONTROL REPORT

Prepared for: Project Id: Sample Id: Water Spike Lab Id: WG3023-2

Reported: 03-NOV-93

Parameter Value Units Spike Units % Rec Extracted Analyzed

83	100CW	

Naphthalene	16.9	ug/L	25	ug/l	67.8%	25-0CT-93 28-0CT-93
Acenaphthene	16.6	ug/L	25	ug/l	66.6%	25-0CT-93 28-0CT-93
Pyrene	2.06	ug/L	2.5	ug/l	82.6%	25-0CT-93 28-0CT-93
Benzo(k)Fluoranthene	0.208	ug/L	.2	ug/l	104 %	25-0CT-93 28-0CT-93
Surrogate: 2-Fluorobiphenyl Benzo(e)Pyrene - Comments:	- 79.2 117. - None	X Recov X Recov	•			25-0CT-93 28-0CT-93 25-0CT-93 28-0CT-93

. .

•

.

.

Ŷ

QUALITY CONTROL REPORT

Prepared for: Project Id: Sample Id: Water Spike Duplicat Lab Id: WG3023-3

Reported: 03-NOV-93

Parameter Value Units % Rec RPD Extracted Analyzed

8310QCW	1	•			
Naphthalene Acenaphthene Pyrene Benzo(k)Fluoranthene	18.6 18.7 2.05 0.203	ug/L ug/L ug/L ug/L	74.4% 74.6% 82.0% 102 %	9.6 12. 4.9 2.4	25-0CT-93 28-0CT-93 25-0CT-93 28-0CT-93 25-0CT-93 28-0CT-93 25-0CT-93 28-0CT-93 25-0CT-93 28-0CT-93
- Suppositor	-	· . ·			
Surrogate: 2-Fluorobiphenyl Benzo(e)Pyrene	99.5 113.	% Recov % Recov			25-0CT-93 28-0CT-93 25-0CT-93 28-0CT-93
Comments:	- None				

ANALYTICAL DATA REPORT

Prepared for: Project Id: Sample Id: Method Blank Lab Id: WG3024-4 Collected: Received: 27-0CT-93 Reported: 03-NOV-93

Parameter Value Limit Units Extracted Analyzed

Naphthalene	ND <	100	ug/Kg	27-001-93	30-0CT-93
Acenaphthylene	ND <	200	ug/Kg	27-001-93	30-0CT-93
Acenaphthene	ND <	200	ug/Kg	27-0CT-93	30-0CT-93
Fluorene	ND <	20.	ug/Kg	27-001-93	30-0CT-93
Phenanthrene	ND <	50.	ug/Kg	27-OCT-93	30-0CT-93
Anthracene	ND <	50.	ug/Kg	27-0CT-93	30-0CT-93
Fluoranthene	ND <	10.	ug/Kg	27-OCT-93	30-0CT-93
Pyrene	ND <	10.	ug/Kg	27-0CT-93	30-0CT-93
Benzo(a)Anthracene	ND <	10.	ug/Kg	27-001-93	30-OCT-93
Chrysene	ND <	10.	ug/Kg	27-OCT-93	30-0CT-93
Benzo(b)Fluoranthene	ND <	5.0	ug/Kg	27-0CT-93	30-0CT-93
Benzo(k)Fluoranthene	ND <	5.0	ug/Kg	27-0CT-93	30-OCT-93
Benzo(a)Pyrene	ND <	5.0	ug/Kg	27-OCT-93	30-OCT-93
Dibenz(ah)Anthracene	ND <	10.	ug/Kg	27-OCT-93	30-0CT-93
Benzo(ghi)Perylene	ND <	10.	ug/Kg	27-OCT-93	30-OCT-93
Indeno(123cd)Pyrene	ND <	10.	ug/Kg	27-0CT-93	30-0CT-93
-	•		-3.00		
Surrogate:	-				
2-Fluorobiphenyl	85.3	- .	%	27-001-93	30-001-93
Benzo(e)Pyrene	106.	-	%	27-0CT-93	30-0CT-93
-	-				
Comments:	None				

QUALITY CONTROL REPORT

Prepared for: Project Id: Sample Id: Method Blank Spike Lab Id: WG3024-5

Reported: 03-NOV-93

Parameter Value Units Spike Units % Rec Extracted Analyzed

83100CS

Naphthalene Acenaphthene Pyrene Benzo(k)Fluoranthene	1820 1920 193. 19.1	ug/Kg ug/Kg ug/Kg ug/Kg	2500 2500 250 250 20	ug/Kg ug/Kg ug/Kg ug/Kg	72.7% 76.8% 77.2% 95.5%	27-0C1-93 30-0C1-93 27-0C1-93 30-0C1-93 27-0C1-93 30-0C1-93 27-0C1-93 30-0C1-93
Surrogate: 2-Fluorobiphenyl Benzo(e)Pyrene - Comments:	90.8 115 None	% %				27-0CT-93 30-0CT-93 27-0CT-93 30-0CT-93

· · · · · ·

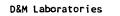
. · · ·

.

· · ·

. .

ANALYTICAL DATA REPORT


Prepared for: Project Id: Sample Id: MX Lab Id: WG3024-1

Reported: 03-NOV-93

Parameter Value Limit Units Extracted Analyzed

8310S

7-0CT-93 7-0CT-93 7-0CT-93 7-0CT-93 7-0CT-93 7-0CT-93 7-0CT-93 7-0CT-93 7-0CT-93 7-0CT-93 7-0CT-93	30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93	
-0CT-93 -0CT-93 -0CT-93 -0CT-93 -0CT-93 -0CT-93 -0CT-93 -0CT-93 -0CT-93 -0CT-93 -0CT-93 -0CT-93	30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93	
-0CT-93 -0CT-93 -0CT-93 -0CT-93 -0CT-93 -0CT-93 -0CT-93 -0CT-93 -0CT-93 -0CT-93 -0CT-93 -0CT-93	30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93	
-0CT-93 -0CT-93 -0CT-93 -0CT-93 -0CT-93 -0CT-93 -0CT-93 -0CT-93 -0CT-93 -0CT-93 -0CT-93 -0CT-93	30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93	
7-0CT-93 7-0CT-93 7-0CT-93 7-0CT-93 7-0CT-93 7-0CT-93 7-0CT-93 7-0CT-93	30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93	
7-0CT-93 7-0CT-93 7-0CT-93 7-0CT-93 7-0CT-93 7-0CT-93 7-0CT-93	30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93	
7-0CT-93 7-0CT-93 7-0CT-93 7-0CT-93 7-0CT-93 7-0CT-93	30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93	
7-0CT-93 7-0CT-93 7-0CT-93 7-0CT-93 7-0CT-93	30-0CT-93 30-0CT-93 30-0CT-93 30-0CT-93	
7-0CT-93 7-0CT-93 7-0CT-93 7-0CT-93	30-0CT-93 30-0CT-93 30-0CT-93	
7-0CT-93 7-0CT-93 7-0CT-93	30-0CT-93 30-0CT-93	
7-0CT-93 7-0CT-93	30-OCT-93	
7-OCT-93		
	20-001-22	
	70 007 07	
7-OCT-93	30-OCT-93	
-OCT-93	30-OCT-93	
7-OCT-93	30-OCT-93	
7-OCT-93	30-0CT-93	
7	-OCT-93	-OCT-93 30-OCT-93 -OCT-93 30-OCT-93

QUALITY CONTROL REPORT


Prepared for: Project Id: Sample Id: Matrix Spike Lab Id: WG3024-2

.

Reported: 03-NOV-93

Parameter Value Units Spike Units % Rec Extracted Analyzed

1540	μα/Κα	2500	ua/Ka	61 8%	27-001-93 30-001-9
			•••••		27-001-93 30-001-9
					27-001-93 30-001-9
18.0	ug/Kg	20	ug/Kg	90.0%	27-0CT-93 30-0CT-9
-					
-					
84.3	*				27-001-93 30-001-9
111.	X				27-0CT-93 30-0CT-9
-					
	- 84.3 111.	1690 ug/Kg 182. ug/Kg 18.0 ug/Kg - - 84.3 % 111. %	1690 ug/Kg 2500 182. ug/Kg 250 18.0 ug/Kg 20 - - 84.3 % 111. %	1690 ug/Kg 2500 ug/Kg 182. ug/Kg 250 ug/Kg 18.0 ug/Kg 20 ug/Kg - - - - - - - - - - - - - - - - - - -	1690 ug/Kg 2500 ug/Kg 67.7% 182. ug/Kg 250 ug/Kg 73.0% 18.0 ug/Kg 20 ug/Kg 90.0%

QUALITY CONTROL REPORT

Prepared for: Project Id: Sample Id: Matrix Spike Dup Lab Id: WG3024-3

Reported: 03-NOV-93

Parameter Value Units Z Rec RPD Extracted Analyzed

8310QCS

Naphthalene	1420	ug/Kg	56.8%	8.4	27-0CT-93 30-0CT-93
Acenaphthene	1560	ug/Kg	62.2%	8.4	27-0CT-93 30-0CT-93
Pyrene	179.	ug/Kg	71.5%	1.7	27-0CT-93 30-0CT-93
Benzo(k)Fluoranthene	17.6	ug/Kg	88.0%	2.2	27-0CT-93 30-0CT-93
Surrogate: 2-Fluorobiphenyl Benzo(e)Pyrene - Comments:	- 75.1 107. - None	% %			27-0CT-93 30-0CT-93 27-0CT-93 30-0CT-93

-044 PROJECT NAME 0013-016 Union Pacific RR - Saummento 044 Ou S-5 Additional Investig.								NO.	0 ³¹ ,0										
SAMPLERS: 75-parmel							OF				0 0 0	/ /	/ /						
STA. NO. DATE TIME S S S STATION LOCATION										pH di		/				REMARKS			
18-2-1-125	10/08/93			X	UPRE	SAC	au 5-5	1	K	(ŕ	<u> </u>	Í –	ÍΠ	· · · ·				
13-21- 6.5-20	"	•				1	·	,	X	X					Pleasen	·fe	date of		
18.21.	"							/	X						Samples	MA	arding		
6.22.15	10/18/93		<u> </u>				•	1	X						holding of	Kine	es /		
18-22- 2.5-20 18-22-	"			\parallel	ļ			/	X	Х						Gere	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
3.5-25	*			↓				1	X						1 321 4	am;	resinotter		
18-23- 8.0-19.5	10/19/93				ļ			1	X	X					(cooler	- /	res notter		
18-23- 3.0-24.5	ų.				<u> </u>			1	K								10 J		
18-24-	10/19/93	·]		1	X		[الدانية		
18-24- 8.0-19.5	` <i>II</i>							1	K	X			1		· · · · · · · · · · · · · · · · · · ·				
18-24-								1	K								UP STR		
	10/20/13							1	X		DOFF		IODY	SEALS	INTACT D NOT IN	FACTER			
113-25-	"							1	X	X	- 	PLLH	I-Mi	ERAT	IRE COLE	•6	<u> </u>		
18-25- 4.0-15.0	1.							1	X	X			1				6 0		
18-25-	1'	1		V		V	· · · · · · · · · · · · · · · · · · ·	1	K	<u> </u>			1		· · · · · · · · · · · · · · · · · · ·				
h	H]4 .[121/93	/Time 1800	Received by: Bipmen	~1	Reli	nquiil	hed b	γ: /Si	p	↓↓ ∀/	Dote / Ti	~ *	Received by: Bonen		
Belinquished by: (S-prenure) Dete / Time Received by: (Signeture)							Relinquished by: (Signervie)						Data / Ti	~	Received by: 13-pretur				
Lelinquished by (Sension) Date / Time Received for Laborat (Sension)					ory by:	y by: Date / Time Remar						the second	50	ind vesults to					

and a state of the second state

高い かい かい

V . 24

and the second states of the second second

PROJ. NO. OO173-076 -044 PROJECT NAME Union Pacific A2-Sacramento CHAIN CHAIN CHAIN CHAIN								но. 0f			0	hr	/	7	//				
SAMPLENS: 13 manuel											с, 0 Г. С.	/ /	/ /	'	REMARKS				
STA. NO.	DATE	TIME	3	GAS	F T	АТЮ	N LOCATION	CON- TAINERS	//		NH3	/			nemonas				
TB-25- 4.0-25.5	repo/95			X	UPER-S	AC	ou s-5	1	X						2=	5.0-25,2	5 J.P.		
	10/20/43	·		Τ				1	X	X					2	5.0-25,2 0.0-25,2	S DP:		
13-26- 4.0-25.5	"							1	X						Tlas	des re	date	of 25	
13-26 - .o-15.0	"						•	1	X						Sam	des re	mardina		
18-27- .S-19.0	10/193							1	X	X					1 1	na tit	ness	18.5-2	
3-27-	ų							1 .	X						i				
3-27-	11		<u> </u>					1	X							<u> </u>	•		
13-23-	10/19/13							1	X								3 ¹⁻⁷⁰		
1B-21W	10/18/93								X	X								-1)	
Braw		·						1.	X	X		·					8	12	
1B-23W	10/19/93						· · · · · · · · · · · · · · · · · · ·	1	X	¥60						IOT INTACT		2 2	
13-242	"		<u> </u>				· 	/	X	K	<u>coo</u>	ER TI	MPE	RATUR	E COL	<u>⊅_</u> •℃	i sa	A	
1B-25W		<u> </u>		\square				<u> </u>	X	X							- 545 		
B-26W	' <i>"</i>	ļ						. /	X	X									
13.27W	L"		Ł	1			[<u> </u>	X	K								-	
winquist	A DA:	A	1	/	2193 12	2 (N	Received by: Riperm	•1	Reli	הקטוז	hed b	γ: <i>IS</i> ,	p = e tu i	•1		Dete / Time	Received	by: Kapan	
helphoneuished by: (S-prenne) Dele / Time				Received by: Isignerure1			Relinquished by: (Septenne)						Dete / Time	Received by: 13-p-10-10					
Relinquished by (Service) Date / T			TH 4	Received for Laborato	Date / Time Rema					lemarl	"Sind results to Jim Bake Dim Sac								

. .

QUALITY CONTROL REPORT

In order to provide you with the means of assessing the quality of the data in our report, **D&M Laboratories** reports the results of Quality Control samples analyzed with your samples.

The Quality Control samples provide the following QC information:

The Method Blank (MB) monitors the level of contamination introduced by reagents or glassware. A minimum of one MB is run per batch of 20 samples or less.

The Method Blank Spike (MBS) measures the accuracy of analytical techniques and is not subject to matrix effects. A minimum of one MBS is run per batch of 20 samples or less.

The Matrix Spike (MS) measures the accuracy of the method for a matrix type. Due to the high variability within matrix types and the necessity of batching samples from varied sources, matrix spike information from one sample is not necessarily relevant to other samples on the batch. A minimum of two matrix spikes, MS and MSD, are run per batch of 20 samples or less. The sample selected for the matrix spike is designated MX, and may or may not have been submitted by the recipient of this report.

The Matrix Spike Duplicate (MSD), along with the MS, is used to monitor the precision (RPD) of the method and to indicate possible non homogeneity of the sample matrix.

Equations used for determining percent recovery and relative percent difference (RPD) are as follows:

MBS % Recovery = (MBS result / MBS spike level) x 100 MS % Recovery = [(MS result - MX result) / MS spike level] x 100 RPD ={ | MS result - MSD result | / [(MS result + MSD result) / 2]} x 100

We continue to strive to improve the quality of service to our clients. We welcome any questions or comments you may have about this information, or about **D&M Laboratories** in general. Please contact a Project Manager for further information.

QCRep.3\92\6

LABORATORY FOOTNOTES

SAMPLE RECEIPT

- (1) Sample containers were received broken.
- (2) The samples were not properly refrigerated during transport to the laboratory.
- (3) The samples were not properly preserved.
- (4) The information on the chain-of-custody does not match the information on the sample containers.
- (5) The samples were received after the required holding time.

BLANK RESULT

- (6) This analyte was detected in the method blank above the reporting limit.
- (7) This analyte was detected in the trip blank above the reporting limit.

SPIKE RECOVERY

- (8) The matrix spike recovery was out-of-control due to the matrix effects. The MBS recovery was acceptable.
- (9) The matrix spike recovery is not significant due to the high concentration of the analyte in the sample relative to the amount of spike added.
- (10) The method of standard additions was performed and confirmed a matrix interference.

DUPLICATE RESULT

(11) The variation in spike recoveries reflects the nonhomogeneity of the sample.

SURROGATE RECOVERY

- (12) Accurate quantitation of the surrogate was not possible due to the extent of sample dilution.
- (13) The surrogate recovery was high due to the presence of interfering compounds in the sample.
- (14) The surrogate recovery was low due to matrix effects. The analysis was repeated with similiar results.

DETECTION LIMITS

- (15) The detection limit was raised due to the insufficient amount of sample available for analysis.
- (16) The detection limit was raised due to the dilution required by high-level analytes in the sample.
- (17) The detection limit was raised due to the dilution required by high-level non-target analytes in the sample.

CHROMATOGRAPHY NOTES

- (18) These compounds co-elute; therefore, a total value is reported for both.
- (19) The sample was tentatively identified and semi-quantitated based on the best chromatographic fit from the available standards.
- (20) The sample chromatograph resembled an "aged" hydrocarbon product.
- (21) Hydrocarbons were found in the range of gasoline and diesel but did not resemble the gasoline or diesel fingerprint.

HOLDING TIME

- (22) This sample was extracted outside of the required holding time.
- (23) This sample was analyzed outside of the required holding time.