

Removal Action Workplan Slag and Slag-Impacted Soil Soil Operable Unit S-6 Union Pacific Curtis Park Railyard Sacramento, California

Job No.: 00173-195-044

May 2000

DISTRIBUTION LIST: UNION PACIFIC RAILROAD YARD SACRAMENTO, CALIFORNIA PROJECT NUMBER 00173-110-044 (Dames & Moore)

Mr. James A. Levy, P.E.
Manager, Environmental Site Remediation
Union Pacific Railroad Company
1600 Vernon Street
Roseville, CA 95678

Ms. Frances E. Anderson Chief, Sacramento Responsible Party Unit Region 1, Department of Toxic Substances Control California Environmental Protection Agency 10151 Croydon Way, Suite 3 Sacramento, CA 95827 Attn: Fernando Amador, P.E., Project Manager

Ms. Wendy L. Cohen, P.E.
Senior Water Resources Control Engineer
Central Valley Regional Water Quality Control
Board
3443 Routier Road
Sacramento, CA 95827-3098

Mr. Jimmie Yee Mayor, City of Sacramento 915 I Street, Room 205 Sacramento, CA 95814 Attn: Mr. Chuck Dalldorf

Reference Librarian
Sacramento City College Library
3835 Freeport Blvd.
Sacramento, CA 95822

Land Park Community Association P.O. Box 188285 Sacramento, CA 95818

City Clerk's Office 915 I Street, Room 304 Sacramento, CA 95814

Ralph Propper 2749 Donner Way Sacramento, CA 95818

Ms. Marion Moe Sierra Curtis Neighborhood Associates 2535 Donner Way Sacramento, CA 95818 Reference Librarian Belle Cooledge Library 5600 South Land Park Drive Sacramento, CA 95822

Mr. Robert Bylsma Union Pacific Railroad Company 10031 Foothills Blvd., Suite 200 Roseville, CA 95747

Ms. Ava R. Langston-Kenney Senior Planner, Department of Planning and Development City of Sacramento 1231 I Street, Room 300 Sacramento, CA 95814

Ms. Lauren Hammond City Council Member City of Sacramento 915 I Street, Room 205 Sacramento, CA 95814

Mr. John Juhrend Geo-Con, Inc. 7801 Folsom Blvd., Suite 220 Sacramento, CA 95826

ton H. Hickox gency Secretary alifornia Environmental Protection Agency

Department of Toxic Substances Control

Edwin F. Lowry, Director 10151 Croydon Way, Suite 3 Sacramento, California 95827-2106

Gray Davis
Governor

ADMINISTRATIVE RECORD
UNION PACIFIC RAILROAD CO.
SACRAMENTO SITE
REMOVAL ACTION WORKPLAN
for SLAG REMOVAL

This Administrative Record List is provided in accordance with Subpart I of the National Contingency Plan to identify all documents that are relied on or considered when approving the subject removal action workplan. An information repository has been established at the Department file room to contain the documents constituting the Administrative Record. The information is available for review by appointment at:

Department of Toxic Substances Control, Region 1 10151 Croydon Way, Suite 3 Sacramento, California 95827 (916)255-3758

Administrative Record List:

11778491 National Contingency Plan, U.S. Environmental Protection Agency.

11778492 Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA, U.S. Environmental Protection Agency, October 1988.

11778493 Health and Safety Code Chapter 6.8

- 4. Battelle, 1995, Draft Final Report, Determination of the Bioavailability of soluble Arsenic and Arsenic in Slag Following Oral Administration in Microswine, December.
- 5. Dames & Moore, 1988, Phase I Remedial Investigation/Feasibility Study Report, Union Pacific Railroad yard, Sacramento, California, May.
- 6. Dames & Moore, 1990, Baseline Health Risk Assessment, Appendix F of the Draft Remedial Investigation Report, Union Pacific Railroad, Sacramento Shops Yard, March.
- 7. Dames & Moore, 1991, Remedial Investigation/Feasibility Study Report, Union Pacific Railroad Yard, Sacramento, California, May.

- 8. Dames & Moore, 1991, Revised baseline Health Risk Assessment, Union Pacific Railroad Yard, Sacramento, California, October.
- 9. Dames & Moore, 1991, Addendum Remedial Investigation/Feasibility Study Report, Union Pacific Railroad Yard, Sacramento, California, November.
- 10. Dames & Moore, 1992, Feasibility Study Supplement, Union Pacific Railroad Yard, Sacramento, California, October.
- 11. Dames & Moore, 1995, Air Monitoring Report, Soil Operable Unit S-5, Union Pacific Railroad Yard, Sacramento, California, February.
- 12. Dames & Moore, 1995, Final Remedial Action Plan, Union Pacific Railroad Yard, Sacramento California, June.
- 13. Dames & Moore, 1999, Assessment of Additional PAH Soil Impacts, Union Pacific Railroad Company Sacramento (Curtis Park) Railyard, letter report dated March 12.
- 14. Sacramento Regional Transit District, 1997, Final Environmental Impact Statement/Final Subsequent Environmental Impact Report, February.
- 15. Union Pacific Railroad Co., October 29, 1999 correspondence, Proposal to create Operable Unit S-06 for Regional Transit District project.
- 16. Department of Toxic Substances Control, November 29, 1999 correspondence, Approval of proposal for creation of Operable Unit S-6.
- 17. 1999 State of California Law, Senate Bill 120, Chapter 395

Printed on Recycled Paper

REMOVAL ACTION WORKPLAN SLAG AND SLAG-IMPACTED SOIL SOIL OPERABLE UNIT S-6 UNION PACIFIC CURTIS PARK RAILYARD SACRAMENTO, CALIFORNIA

Section	Page
1.0 INTRODUCTION	1
1.1 PURPOSE OF THE REMOVAL ACTION WORKPLAN 1.2 BACKGROUND	1
2.0 SITE DESCRIPTION	3
2.1 PHYSICAL DESCRIPTION	3 3 3
3.0 SUMMARY OF OU S-6 INVESTIGATION FINE	DINGS5
 3.1 ACTIVE RAILYARD SOIL INVESTIGATION - 1991 3.2 AIR MONITORING - 1994	5 6
4.0 HEALTH RISK ASSESSMENT	9
5.0 PROPOSED FUTURE LAND USE	11
5.1 CURRENT AND FUTURE LAND USES OF OU S-6. 5.2 REMEDIAL ACTION OBJECTIVES	11 12
6.0 ENGINEERING EVALUATION/COST ANALYS	
6.1 OBJECTIVE	
7.0 REMOVAL ACTION	17
7.1 EXCAVATION BASIS	
7.2.3 Post Excavation Activities	22
7.2.4 Contingency Plan for Unanticipated Contan	nination23

REMOVAL ACTION WORKPLAN SLAG AND SLAG-IMPACTED SOIL **SOIL OPERABLE UNIT S-6** UNION PACIFIC CURTIS PARK RAILYARD SACRAMENTO, CALIFORNIA

Table of Contents (Continued)

8.0 SCHEDULE25
9.0 REFERENCES
LIST OF TABLES, FIGURES, AND APPENDICES
<u>TABLES</u>
TABLE 1 – HISTORICAL SOIL ANALYTICAL DATA – OU S-6 TABLE 2 – CALCULATED VOLUMES AND TONNAGES OF EXCAVATED MATERIAL – OU S-6
TABLE 3 – ANALYTICAL DATA SUMMARY – OU S-6 TABLE 4 – SCREENING OF REMEDIAL ALTERNATIVES – OU S-6
<u>FIGURES</u>
FIGURE 1 – SITE LOCATION MAP FIGURE 2 - LOCATION OF OU S-6 FIGURE 3 – TYPICAL MAINLINE CROSS SECTION FIGURE 4 – PASSENGER STATION AREAS/STOCKPILE AND LOADING AREA FIGURE 5 – PASSENGER AREA SAMPLE LOCATION MAP FIGURE 6 – PASSENGER STATION EXCAVATION AREA AND CONFIRMATION SAMPLE MAP
APPENDICES

APPENDIX A – LABORATORY DATA

REMOVAL ACTION WORKPLAN SLAG AND SLAG-IMPACTED SOIL SOIL OPERABLE UNIT S-6 UNION PACIFIC CURTIS PARK RAILYARD SACRAMENTO, CALIFORNIA

1.0 INTRODUCTION

This Removal Action Workplan (RAW) has been prepared at the request of the California Environmental Protection Agency, Department of Toxic Substance Control (DTSC) to address removal of slag and slag-impacted soil from soil operable unit (OU) S-6 at the Union Pacific Railroad Company's (UPRR) Curtis Park railyard in Sacramento, California. Slag as railroad track ballast and soil impacted with slag will be removed as part of the relocation of UPRR's mainline to accommodate construction of the Sacramento Regional Transit District's (SRTD) southline extension of light rail. UPRR will relocate their mainline approximately 40-feet to the east of its current alignment in the adjacent OU S-5.

1.1 PURPOSE OF THE REMOVAL ACTION WORKPLAN

The purpose of the RAW is to present the conceptual plan for removal of slag and slag-impacted soil from the portion of OU S-6 where UPRR will be decommissioning their current mainline track and SRTD will be constructing their light rail track and passenger stations. The RAW also includes a summary of surface and subsurface investigation information and data for OU S-6, which has been used to develop the slag and soil removal plan.

1.2 BACKGROUND

Preparation of this RAW followed, and was based on, the outcome of three preceding activities or actions necessary to enable the removal action to be performed in the Curtis Park railyard in a timely manner. These activities or actions included:

- Creation of a new and separate soil operable unit (OU S-6) out of the original OU S-5 (the portion of the Curtis Park railyard containing the active switching yard and mainline track);
- Development of an estimate of the volume of slag and slag-impacted soil to be removed from OU S-6 per the agreement with SRTD; and
- Collection and analysis of data regarding potential impacts to surface and subsurface soil from railroad activities in areas of OU S-6 where future land use would be something other than the land use specified in the Remedial Action Plan (RAP) for OU S-5 (Dames & Moore, 1995b).

Creation of OU S-6 was requested in a letter from UPRR to DTSC dated October 29, 1999. The letter stated that creation of OU S-6 would facilitate the expedient remediation and certification of

this portion of the site and would allow SRTD to proceed with the development of the southline light rail extension. The DTSC approved the request and created OU S-6 in a letter to UPRR dated November 29, 1999.

In March 1999, Dames & Moore performed a reconnaissance of approximately six miles of UPRR's right-of-way (ROW) between R Street in midtown Sacramento and Meadowview Road in south Sacramento. The objective of this reconnaissance was to map the lateral and vertical extent of slag and slag-impacted soil in the portion of the ROW where UPRR's mainline would have to be relocated to facilitate construction of SRTD's light rail tracks. This information was used to develop an estimate of the volume of slag and slag-impacted soil that would have to be removed prior to construction of SRTD's track. The estimated volume of slag and slag-impacted soil to be removed from OU S-6 was derived from the total estimated slag volume for the entire SRTD acquisition.

This RAW presents chemical analysis data collected to assess impacts to soil for portions of OU S-6 where future land use will be different from the current land use in OU S-5. Two specific areas of OU S-6 will be developed as passenger stations for light rail and as such constitute a different land use than the remainder of OU S-6. In these areas concentrations of constituents of concern must meet the clean up objectives of the RAP. This data and its effect on future land use in OU S-6 is discussed in Section 5.0.

1.3 INFORMATION PRESENTED IN THE REMOVAL ACTION WORKPLAN

In addition to this introduction, the RAW includes the following sections: Section 2.0 provides a description of the project site including the physical characteristics of the site and pertinent site history. Section 3.0 summarizes the findings of investigation of surface and subsurface soil in OU S-6. Section 4.0 presents a summary of the Health Risk Assessment for the railyard and discusses how the findings of that risk assessment and other toxicological studies apply to OU S-6. Section 5.0 discusses the current and future land uses in OU S-6, the remedial action objectives for OU S-6, and the effects of contamination in soil on future land use in OU S-6. Section 6.0 presents an Engineer's Evaluation/Cost Analysis for the remedial alternatives that were considered for implementation in OU S-6. Section 7.0 presents the conceptual excavation plan for slag removal in OU S-6 and Section 8.0 presents a proposed schedule. References are provided in Section 9.0.

2.0 SITE DESCRIPTION

This section provides a brief description of the physical characteristics of the site and pertinent historical information regarding site operations and activities. Detailed descriptions of the physical characteristics of the site and site history can be found in the Remedial Investigation/Feasibility Study (RI/FS) Report (Dames & Moore, 1988, 1991a), the Addendum RI/FS Report (Dames & Moore, 1991c), and the RAP (Dames & Moore, 1995b). Previous investigation activities are also described.

2.1 PHYSICAL DESCRIPTION

2.1.1 Location and Site Physiography

The Curtis Park Railyard (including OU S-6) is located at 3675 West Pacific Avenue in Sacramento, California (Figure 1). The railyard in its entirety encompasses approximately 94-acres. The railyard is divided into a 31-acre active railcar switching yard (formerly designated as OU S-5) which comprises the western third of the property and an inactive yard of approximately 63-acres which comprises the eastern two-thirds of the property. The active railyard contains the main track line along the west side of the yard and several sidings.

The portion of the active yard being acquired by SRTD for construction of the southline extension of light rail encompasses 6.738 acres of the western portion of the active railyard and includes the current UPRR mainline. This portion of the active railyard is what is now designated as OU S-6 (Figure 2).

The ground surface of OU S-6, like the rest of the railyard, is relatively flat-lying with an elevation of approximately 25 feet above mean sea level. No structures or facilities other than the mainline and one unused siding are present in OU S-6.

2.1.2 Surrounding Land Use

The railyard is located approximately one mile south of downtown Sacramento in a predominantly residential area of Sacramento. OU S-6 is surrounded by the following land uses:

- Sacramento City College is adjacent to the southwest side of OU S-6;
- residential development is adjacent to the west side of OU S-6 north of Sacramento City College;
- commercial development is adjacent to a small portion of the northwestern side of OU S-6:
- the active switching yard (OU S-5) is adjacent to the entire eastern side of OU S-6, and
- the northern and southern ends of OU S-6 terminate at the northern and southern ends of the Curtis Park railyard.

2.1.3 Site Geology and Hydrogeology

Historically, fill soil was placed on much of the Curtis Park railyard including the mainline and switching yard areas in order for the surface grade of the railyard property to be made relatively flat. The thickness of the fill ranges from approximately 1-foot in the southern portion of the site to upwards of 10-feet in the northwestern and north central portion of the. The nature of the fill material is described in the RI/FS Report, Addendum RI/FS Report, FS Supplement, and the RAP (Dames & Moore, 1991a, 1991b, 1992, and 1995b, respectively). Fill soil typically is a dark brown sandy silt/silty sand with minor clay and gravel. In OU S-6 the fill soil is overlain by railroad track ballast to a maximum thickness of approximately two feet.

Native soil beneath the fill is described in detail in several reports including the RI/FS Report (Dames & Moore, 1991a) and is generally described as silty clay grading to silty fine sand grading to fine sand in the first hydrostratigraphic zone (HSZ) or the saturated zone. The depth to the water table, or top of the first HSZ varies seasonally, but is approximately 25 to 30-feet below ground surface (bgs) in most onsite wells. A cemented soil layer referred to as a "hardpan" is commonly encountered in shallow native soil at a depth of approximately three to five feet bgs.

2.2 SITE HISTORY

The Western Pacific Railroad established a railroad maintenance yard at the Curtis Park location in the early 1900s. The railyard was used to maintain and rebuild steam locomotives and boilers, refurbish rail cars, and assemble trains. UPRR purchased the operations in 1982, but discontinued maintenance yard operations at the site in 1983. Remaining buildings and structures in the maintenance yard were demolished by UPRR in 1985 and 1986. UPRR still maintains the mainline and switching yard operation in the active yard (OU S-6 and OU S-5, respectively).

Based on review of aerial photographs, the area of OU S-6 appears to have always been used for either a mainline or sidings. No structures are visible in the area of OU S-6 on any of the historical aerial photographs. The location of the mainline in the active railyard appears to have changed sometime between 1972 and 1976. In aerial photos from 1972 and earlier the mainline was located approximately 70-feet east of its current location, which is outside the boundaries of OU S-6. At that time the area of OU S-6 was occupied by several siding tracks.

3.0 SUMMARY OF OU S-6 INVESTIGATION FINDINGS

This section briefly describes the investigation of surface and subsurface soil and air monitoring performed in OU S-6 and summarizes the results of these investigations.

Previous site investigation included an evaluation of slag and soil in the active railyard as part of the remedial investigation during December 1991 and air monitoring in the active railyard in 1994. More recently, soil samples were collected and analyzed from the portions of OU S-6 where passenger stations are planned to be constructed. The results of these investigations are summarized below.

No investigation of groundwater has been performed in OU S-6 as no potential sources of impacts were identified in this part of the site and OU S-6 is cross to upgradient from the remainder of the site.

3.1 ACTIVE RAILYARD SOIL INVESTIGATION - 1991

A total of nine locations in or near OU S-6 (OU S-5 at that time) were sampled in December 1991 (Dames & Moore, 1992). Samples were collected from surface materials (slag and/or soil) and subsurface soil and analyzed for total metals, purgeable hydrocarbons, and diesel range petroleum hydrocarbons. The results of these analyses are summarized in Table 1. As shown on Table 1, only two elevated detections of arsenic and one elevated detection of lead were reported. The two elevated detections of arsenic were for samples of surface or shallow soil. No detections of purgeable hydrocarbons or diesel range petroleum hydrocarbons were reported.

3.2 AIR MONITORING - 1994

An air monitoring study was performed in the active railyard in 1994 (Dames & Moore, 1995a). The study was requested by the DTSC to evaluate airborne concentrations of particulates, arsenic, and lead due to normal railyard traffic (trains and other surface vehicles). Five locations around the perimeter of the railyard and one background location were monitored three times over a four month period from August through December 1994. The background station was located on top of Hughes Stadium at Sacramento City College west (and generally upwind) of the railyard. Wind direction and speed were also monitored during the study.

Particulate concentrations around the railyard perimeter ranged from a low of 2.2 micrograms per cubic meter (ug/m³) to a high of 165.9 ug/m³. Particulate concentrations for the background station ranged from 21.8 to 110.7 ug/m³. Some of the particulate concentrations exceeded state and federal standards for respirable particulate matter (PM₁₀) of 50 and 150 ug/m³, respectively.

Arsenic concentrations were all reported as non-detect (ND) except for one background sample collected in the third round (12/94), which had an arsenic concentration of 0.0053 ug/m³ and one of the railyard perimeter stations, also collected in the third round, which had an arsenic concentration of 0.0044 ug/m³. There is no promulgated air quality standard for arsenic.

Lead was reported in each railyard perimeter sample collected ranging from 0.008 to 0.0344 ug/m³. Lead was also reported for each background sample ranging from 0.008 to 0.02 ug/m³. All reported lead concentrations were significantly lower than the ambient air quality standard of 1.5 ug/m³.

3.3 SLAG BALLAST INVESTIGATION

As a part of the real estate transaction due diligence activities, OU S-6 was visually inspected for the presence of slag ballast. Ballast is the layer of rock that is laid down under track structures to provide drainage and structural support for the tracks. The slag at the Curtis Park railyard is a byproduct of copper-ore smelting and is a source of metals including arsenic and lead. Slag ballast at the UPRR Curtis Park Railyard is actually a mixture of slag and natural rock ballast with the percentage of slag in the mixture ranging from 5 to 80% slag.

During the slag ballast investigation the lateral and vertical extent of slag in OU S-6 was assessed. Except for a very small segment at the northern end of OU S-6, slag ballast was observed to be present over the entire area of OU S-6. The vertical extent of slag was assessed in several locations by digging through to the base of the slag. The observations from the investigation and how they were used to develop the estimated volume of slag to be removed are discussed in the following paragraphs.

A typical rail line cross-section for the UPRR ROW based on the slag ballast investigation is shown on Figure 3. The cross-section identifies three types of materials that will be removed as part of the excavation activities: the slag ballast (D1 and D2), the collateral soil (D3), and the addendum soil (shown as 0.66 or 2/3-foot thick). The thickness of slag ballast under the tracks was observed to be 2 to 8-inches and the thickness of the slag ballast to the sides of the tracks was typically 0 to 2-inches. Collateral soil is the thin layer of soil (1 to 3-inches) immediately beneath the slag ballast that will be removed when the slag ballast is scraped off the ground. Addendum soil is defined as the 2/3-foot deep by 15-foot wide layer of soil that underlies ballast directly beneath the tracks. Together, these materials are collectively referred to as slag and slag-impacted soil.

Based on the areal extent of the slag in OU S-6 and the thickness of the slag ballast, collateral and addendum soil, approximately 7,600 cy or 10,500 tons of excavated material is estimated to be generated by the removal activities (Table 2). The volume actually removed may vary based on

variations in the thickness of the slag ballast. The basis for the volume of slag and slag-impacted soil to be removed is discussed in Section 7.0.

3.4 SOIL INVESTIGATION – SRTD PASSENGER STATIONS

Two areas within OU S-6 are planned for construction of passenger loading and unloading stations. One passenger station, the City College Station, will be located in the southern portion of OU S-6 adjacent to Sacramento City College and the other, the 21st Street Station, will be partially located within the northern end of OU S-6 (Figure 4).

The planned use of these areas as passenger loading and unloading stations, constitutes a different land use than the rest of OU S-6, which will continue to be used for rail traffic only. A discussion of land uses in OU S-6 and OU S-5 and the effects of contamination on them is provided in Section 5.0. Given that the land use in the passenger station areas is different than the rest of OU S-6, concentrations of constituents of concern (arsenic, lead, polynuclear aromatic hydrocarbons (PAHs), and total petroleum hydrocarbons (TPH)) in soil in these two areas must meet the remedial action objectives (RAOs) for restricted land use as specified in the RAP for the Curtis Park railyard (Dames & Moore, 1995b). The remainder of OU S-6 is not subject to the RAOs as long as the land use does not change.

In order to assess concentrations of constituents of concern (COCs) in soil in these areas, soil samples were collected from these areas and analyzed for the COCs. Soil samples were collected from six locations within the area designated for the City College station and three were collected from the 21st Street station location (Figure 5). Fewer locations were sampled in the 21st Street station area because only a portion of this station will lie within OU S-6. Most of this station will be outside and north of OU S-6. Selection of sampling locations was limited by the presence of fiber optic cables on both sides of the main line, other subsurface utilities, and a required minimum set back for work of 10-feet from active track.

In each sampling location soil samples were collected from three or four depth intervals (approximately 1, 3, 4 and 9 feet bgs). Samples of slag or other surface materials overlying shallow soil were not sampled as this material is planned for removal from OU S-6 regardless of the concentrations of COCs. A total of 30 soil samples were submitted to analytical laboratories for chemical analysis including:

- Arsenic and lead by EPA Method 6010B;
- PAHs by EPA Method 8270; and
- TPH by EPA Method 8015M (extractable).

Results of the above analyses are presented on Table 3. As shown on Table 3, the majority of samples analyzed for PAHs had no reported detections of PAHs. Total carcinogenic PAH concentrations exceeded the RAO of 0.042 mg/kg in only four samples (STNCC-03-1.0, STNCC-05-2.0, STNCC-05-4.0, and STN21-02-1.0) and arsenic concentrations exceeded the restricted RAO of 55 mg/kg in only seven samples (STNCC-01-1.0, STNCC-02-1.0, STNCC-03-1.0, STNCC-06-1.0, STN21-01-1.0, STN21-01-3.0, and STN21-02-1.0). With the exception of sample location STN21-01-3.0, all of the arsenic concentrations exceeding RAOs were in the upper one foot of soil. None of the reported lead concentrations exceeded applicable RAOs.

Six relatively low detections of TPH were reported (five were reported as motor oil and one as diesel). None of these detections exceeded the RAOs for TPH. Laboratory reports are included in Appendix A.

Based on these results it is anticipated that soil will have to be excavated in these areas in addition to the amount already planned for removal of slag in order to achieve the RAOs for carcinogenic PAHs and arsenic.

It is anticipated that soil confirmation samples will be collected if additional excavation is required to remove soil exceeding RAOs in the passenger station areas. Soil confirmation samples will be analyzed for the COCs to verify that the RAOs have been achieved for each excavation. A Sampling and Analysis Plan (SAP) describing confirmation sample collection, chemical analysis, and data evaluation procedures is included in Section 7.2.2. Stockpile management, transportation, and soil disposal are also discussed in Section 7.2.2. Detailed plans for these activities will be included in the forthcoming design report for slag removal.

4.0 HEALTH RISK ASSESSMENT

Health risks for the entire Curtis Park railyard were evaluated by a Health Risk Assessment (HRA) (Dames & Moore, 1990 and 1991b) and were summarized in the RAP (Dames & Moore, 1995b). The exposure scenarios and possible exposure pathways evaluated during the risk assessment that could apply to potential receptors in OU S-6 (evaluated as part of OU S-5 in the RAP) are dermal contact with contaminated soil and inhalation of contaminated dust. Given the land use of OU S-6 once the light rail line is constructed and in operation, dermal contact with contaminated soil is less likely than inhalation of contaminated dust.

Assumptions for exposure frequency, duration, and time were made during the risk assessment in order to estimate health risks. These assumptions were applied to two categories of onsite receptors – full time residents (adult and child) and trespassers, which are short-term site occupants. These two receptor categories are also adequate to evaluate the two proposed land uses in OU S-6: rail corridor and passenger station construction and use.

The majority of OU S-6 will remain in use as a rail corridor. The only difference from the current use of the rail corridor is that there will be passenger traffic instead of freight traffic. This shift does not constitute a change in any of the exposure assumptions for the rail corridor. Therefore, there is no increased risk to human health.

There will be two potential receptors at the passenger stations that need to be evaluated: construction workers and light rail passengers. Both of these potential receptors have limited exposure duration. The construction worker will only be exposed during the initial stages of the passenger station construction. The passengers exposure would be limited to the brief periods during which they are waiting for and exiting from trains. In addition, because the station areas will be paved, there may be no direct exposure at all.

Given this, these exposures could conservatively be considered similar to the short-term receptor (trespasser) scenario used in the HRA. The assumptions for the frequency, duration, and time of exposure for a trespasser were 104 days per year for frequency, 8 years for duration, and 8 hours per day for exposure time). These assumptions, particularly the 8-hours per day of exposure are likely very conservative.

Based on the assumptions for a short-term receptor, the estimated lifetime cancer risk due to exposure to the chemicals with the highest contribution to cumulative cancer risks (arsenic and carcinogenic PAHs) was calculated in the HRA to be 9 x 10⁻⁶.

It should be noted that site activities are not believed to be the only source of arsenic in soil at the site. Average background concentrations of arsenic in soil in the area of the site (approximately 8 mg/kg) represent a lifetime cancer risk of two in ten thousand (2 x 10⁻⁴). Additionally, the primary source of arsenic due to site activities is slag. Metals in slag are bound tightly within the slag matrix and therefore are not readily separated from the slag (Walsh & Associates, 1992). Additional studies have shown that the arsenic in slag has no bioavailability (Battelle, 1995). This lack of bioavailability was not accounted for in the HRA, and the potential health risk from exposure to arsenic in slag may therefore have been overestimated by a factor of four (Dames & Moore, 1991b).

5.0 PROPOSED FUTURE LAND USE

This section presents a discussion of future land uses in OU S-6, the applicability of RAOs in the RAP to OU S-6, and the potential effects of soil contamination in OU S-6 on land uses in OU S-6.

5.1 CURRENT AND FUTURE LAND USES OF OU S-6

The current land use in OU S-6 is defined as railroad transportation along UPRR's mainline. No other land uses presently exist in OU S-6. With the construction and operation of SRTD's southline light rail extension, future land use for OU S-6 is planned to remain basically the same as it is today. The only anticipated change in future land use will be passenger loading and unloading in the two stations within OU S-6 as discussed in Section 4.0. The passenger stations fall under the general land use category described in the RAP as "restricted land use". The RAP presents the DTSC's description of restricted land use as follows:

"mixed-use (non-residential) with a permanent deed restriction to prevent future land uses other than those specified and improper future excavation and disposal of contaminated materials. Clean-up levels (RAOs) should be based on conservative exposure scenarios and the land should be developed to prevent exposure to residual contaminated materials. This would be achieved through a combination of buildings, pavement, and controlled landscaping to cover the impacted soil."

Though the land use in the active railyard (OU S-5) is by definition a restricted use, the RAP specifically excludes the active railyard from clean up to meet the RAOs for restricted land use due to UPRR's plan to indefinitely maintain the land use as industrial. Therefore, the light rail corridor portion of OU S-6 is also exempt from meeting restricted land use RAOs. Only the portions of OU S-6 planned for use as passenger stations must meet restricted land use RAOs for the constituents of concern. The RAOs are discussed in Section 5.2.

5.2 REMEDIAL ACTION OBJECTIVES

The RAOs for the COCs in soil applicable to OU S-6 are listed in the following table.

Remedial Action Objectives Union Pacific Curtis Park Railyard Sacramento, California

Constituent	Remedial Action Objective Restricted Land Use (mg/kg)	Remedial Action Objective Unrestricted Land Use (mg/kg)					
Arsenic	55	8					
Lead .	950	220					
PAHs (total carcinogenic)	0.042	0.042					
PAHs (total non-carcinogenic)	100	100					
TPH (diesel or gasoline)	1,000	1,000					
BTEX	B=0.3, T=0.3, E=1.0, X=1.0	B=0.3, T=0.3, E=1.0, X=1.0					

As discussed in Section 3.3, only the RAOs for arsenic and carcinogenic PAHs were exceeded in soil samples collected from the passenger station areas.

5.2.1 Light Rail Corridor

The existing soil contamination in OU S-6 (primarily arsenic and PAHs) is anticipated to have no effect on the future land use of OU S-6 as a light rail line. This is due primarily to the fact that light rail does not constitute a change in land use from the current land use and therefore does not necessitate clean-up to meet restricted RAOs. In addition, after slag and the 2/3-foot of addendum soil have been removed, new, non-slag ballast material will be placed over soil, which will effectively cover any residual contamination in shallow soil. This approach is more conservative than the plan for OU S-5 in the RAP. The RAP states that slag in OU S-5 will not be removed, but only covered as part of ongoing operations and maintenance of OU S-5. Slag removal along the mainline in OU S-6 is discussed further in Section 6.0.

5.2.2 Passenger Stations

The existing soil contamination in OU S-6 would have an effect on future land use in the portions of OU S-6 where the passenger stations will be located due to the presence of arsenic and PAHs at levels exceeding restricted RAOs. The recent soil sampling data indicate that arsenic and PAHs are present in concentrations exceeding the restricted use RAOs primarily in the upper one foot of soil in the areas proposed for the passenger station construction. In one location PAHs were present to 4-feet bgs (Table 3). The estimated volume of soil that exceeds the restricted use RAOs in the passenger station areas is approximately 1200 cubic yards (yds³) based on an anticipated excavation depth of 1.5 feet. Further discussion of excavation activities is provided in Section 7.2.2.

The sampling data also indicates that arsenic is present in concentrations exceeding the unrestricted use RAO across the entire area of both proposed passenger stations to depths as great as 9-feet bgs. The lead concentration in one City College station sample also exceeded the unrestricted use RAO.

6.0 ENGINEERING EVALUATION/COST ANALYSIS

This section presents an Engineering Evaluation/Cost Analysis (EE/CA) for remedial alternatives to address slag and slag-impacted soil in OU S-6. Alternatives were evaluated separately for both the light rail corridor portion of OU S-6 as well as the two areas proposed for construction of passenger stations.

6.1 OBJECTIVE

The objective of the EE/CA is to use information obtained from previous and follow-up investigations in OU S-6 in conjunction with an understanding of applicable remedial technologies to establish potentially feasible alternatives. These alternatives are then screened against the three following criteria as specified in the National Contingency Plan (NCP):

- Effectiveness:
- Implementability; and
- Cost.

In the screening exercise, each alternative is rated (poor, fair, good, excellent) under each of the three criteria. Based on the results of this screening, the alternative with the highest overall rating may be selected. However, another appropriate alternative may be selected as long as the applicable health protection requirements are still met.

6.2 ALTERNATIVES

This section briefly describes remedial alternatives for OU S-6. Alternatives for both the light rail corridor portion of OU S-6 and the areas proposed for construction of passenger stations were evaluated. The rating of each alternative with regard to the three criteria is presented in Table 4.

6.2.1 Light Rail Corridor

The alternatives considered for the light rail corridor include:

- No action;
- RAP alternative for the active railyard (OU S-5) with institutional controls (deed restriction); and
- Removal of visible slag and slag-impacted soil.

The no action alternative for OU S-6 would provide for no future cover of slag in OU S-6. However, the effectiveness of this alternative would be good in that, as stated in the RAP, the concentrations of metals detected in soil in OU S-5 do not exceed the calculated risk-based allowable exposure concentrations. This is conservative in that exposure point concentrations were calculated without considering the low bioavailability of metals in slag. The implementability of this alternative is excellent by default. However, this alternative would not likely be acceptable to SRTD or DTSC. There are no costs associated with this alternative. Based on the lack of acceptance by SRTD or DTSC, this alternative was rejected.

The RAP alternative for the portion of OU S-5 which is now OU S-6 consists of periodic reballasting of track with rock (non-slag) ballast as part of ongoing railyard operation and maintenance. The effectiveness of this alternative is similar to the no action alternative until slag is eventually covered by reballasting with rock at which time the effectiveness is further improved. The implementability of this alternative is good in that it is achieved by ongoing O&M of tracks in the railyard. The alternative is already accepted by the DTSC, but is not likely to be accepted by SRTD. This alternative has no cost beyond that which will be expended by UPRR for normal track O&M. Though acceptable to the DTSC, this alternative was rejected based on SRTD's anticipated lack of acceptance.

The alternative consisting of removal of visible slag and slag-impacted soil as part of the relocation of UPRR's mainline prior to construction of SRTD's light rail provides greater effectiveness than either of the above alternatives because of the removal of the source of arsenic and lead. Any remaining impacted soil would be covered by new rock ballast by SRTD during construction of light rail thereby eliminating potential exposure to remaining concentrations. The implementability of this alternative is rated as fair due to the extensive removal action that will be required. The estimated cost of this alternative is approximately \$150,000 to remove slag and slag-impacted soil, transport it to the designated stockpile area in the Curtis Park railyard, and stockpile the soil. This alternative was retained as the accepted alternative.

6.2.2 Passenger Stations

The alternatives considered for the passenger station areas include:

- No action:
- Removal of slag and slag-impacted soil to meet restricted use RAOs; and
- Removal of slag and slag-impacted soil to meet unrestricted use RAOs.

The no action alternative is the same as described for the light rail corridor. No slag or soil would be removed and therefore restricted use RAOs would not be achieved. The effectiveness of this alternative, though the RAOs would not be achieved, would be good due to the covering of impacts by the station. The implementability is rated as excellent by default though this alternative would not be acceptable to the DTSC as it would not be consistent with the RAP. There are no costs associated with the no action alternative therefore the cost criteria is rated as excellent. The no action alternative was rejected due to its anticipated lack of acceptance by DTSC.

Removal of slag and slag-impacted soil to meet restricted use RAOs as specified in the RAP would consist of the same removal of slag and slag-impacted soil as planned for the light rail corridor. However, based on the results of soil investigation performed in the passenger station areas, some additional soil may also need to be removed beneath the footprint of the stations to meet the restricted use RAOs. Confirmation sampling and analysis of soil following removal of

additional soil would be necessary to demonstrate that the RAOs had been attained. If the results of confirmation sample analysis demonstrate that the RAOs were not met by the additional excavation, then the excavation may have to be deepened further. For purposes of estimating costs to perform additional excavation to meet restricted use RAOs, an excavation depth of 1.5 feet beneath slag was assumed. The area and estimated volume of soil to be removed initially are discussed in Section 7.0. The effectiveness of this alternative is rated as good as it is consistent with the RAP and is anticipated to be acceptable to both SRTD and the DTSC. The cost of additional excavation to meet restricted RAOs is estimated to be approximately \$40,000. In addition to removal, transport, and stockpiling, this cost includes confirmation sampling and analysis and reporting. This alternative was retained as the accepted alternative as it meets the requirements of the RAP.

Removal of slag and slag-impacted soil to meet unrestricted use RAOs as specified in the RAP would consist of the same process described for restricted use RAOs. However, to attain unrestricted use RAOs, it is anticipated that soil removal in the passenger station areas may need to extend deeper. For purposes of estimating costs to perform additional excavation, an excavation depth of 3 feet was assumed. The area and estimated volume of soil to be removed initially are discussed in Section 7.0. The effectiveness of this alternative is rated as good to excellent as the greatest level of protection of human health is provided by meeting unrestricted RAOs in soil. The implementability is downgraded due to the anticipated additional soil excavation to meet unrestricted RAOs. The estimated cost of this alternative is approximately \$67,000. This alternative was rejected as the additional expenditure to attain unrestricted RAOs is not warranted given the type of land use in the passenger stations.

6.3 CONCLUSIONS

Based on the rating of each alternative as discussed in Section 6.2 and as shown on Table 4, removal of slag and slag-impacted soil is the selected alternative for the light rail corridor. The selected alternative for the passenger station areas is removal of slag and slag-impacted soil as proposed for the corridor, plus additional excavation of soil beneath the footprint of the stations as necessary to achieve the restricted use RAOs in soil.

7.0 REMOVAL ACTION

This section presents the conceptual removal action plan for slag and slag-impacted soil in OU S-6. The basis for the plan is presented, followed by a description of pre-removal, removal, and post-removal activities. Also included is a discussion of contingency plans for dealing with unanticipated areas of contamination, if encountered. Soil removal both along the light rail corridor and in passenger station areas is discussed.

7.1 EXCAVATION BASIS

The basis for the approach to excavation activities was developed through consideration of:

- the agreement between SRTD and UPRR to remove slag and slag-impacted soil from the ROW,
- existing soil analytical data.
- 3) the physical constraints on the work, and
- 4) public health and safety.

The agreement between SRTD and UPRR is that visible slag, a thin 2 to 3-inch thick layer of collateral soil beneath slag, and an additional amount of soil (addendum soil) beneath the slag approximately 2/3-foot thick and 15 feet wide will be removed from the portion of the ROW being purchased by SRTD. Based on the areal extent of the slag in OU S-6 and the thickness of the slag ballast, collateral and addendum soil, approximately 7,600 cy or 10,500 tons of excavated material is estimated to be generated by the removal activities. The volume and tonnage calculations for slag and slag-impacted soil to be removed in OU S-6 are presented in Table 2.

The soil analytical data was used to characterize soil in the passenger station areas with respect to the RAOs. Physical constraints include such things as the location of subsurface utilities and available stockpile areas, both in the ROW and in the Curtis Park railyard. Public health and safety concerns consist primarily of limiting airborne emissions during construction activities. A summary of the basis for excavation with these factors in mind is presented below.

As discussed in Section 5.0, activities proposed by this RAW will be conducted along UPRR's mainline in the active railyard. For purposes of this work a new operable unit, OU S-6, was created for the portion of the former OU S-5 that is being purchased by SRTD. As stated in the RAP, the active railyard is not subject to restricted land use RAOs unless the land use changes. Therefore, the only areas currently planned to meet the RAOs are the passenger station areas.

7.2 EXCAVATION PLAN

This section describes the pre-excavation, excavation, and post-excavation activities that will be conducted as part of this removal action.

7.2.1 Pre-Excavation Activities

The pre-excavation activities consist of tasks that need to be completed prior to contractor mobilization to the site. The tasks are described below.

Mainline Track Realignment

To facilitate construction of SRTD's light rail tracks, UPRR will realign their mainline tracks. Prior to slag removal, UPRR will construct a new mainline track in OU S-5. The old mainline tracks will then be removed from OU S-6.

Waste Profiling

The material to be excavated from OU S-6 must be profiled as directed by the disposal facility to ensure that the material meets the disposal facility's waste disposal criteria. The assumed disposal facility for slag and slag-impacted soil is East Carbon Development Corporation (ECDC) in East Carbon, Utah. If ECDC is selected as the disposal facility, the excavated material will be disposed of as a California Hazardous Waste. Additional soil excavated from the passenger station areas in OU S-6 could potentially be taken to a local disposal facility via trucks depending on the results of waste profiling of this soil.

Notifications

Notifications include permits, agency notifications of work to be conducted, and community notification. A grading permit will be obtained by SRTD's contractor from the City of Sacramento and DTSC will be notified prior to any excavation. Community notification will be conducted through the distribution of a Fact Sheet that will invite the community to comment on this RAW and a public hearing. The public hearing will take place during the 30-day public comment period.

Design and Contractor Procurement

The contractor conducting the removal action activities will be contracted by SRTD. The design document will include drawings and specifications that will outline the contractor schedule, health and safety, site preparation, earthwork activities, and waste handling procedures.

Health & Safety

Prior to the start of field work a site-specific Health & Safety Plan (HSP) will be prepared that addresses field activities of both the contractor and construction oversight personnel. The HSP will address potential worker exposure to chemical and physical hazards associated with the removal action. The plan will be written to comply with Title 8, California Code of Regulations (CCR) Sections 3203 and 5192 and applicable sections of Title 8 CCR Subchapters 4 and 7.

Utility Clearance

The limits of the excavation will be cleared for utilities by both Underground Service Alert (USA) and a subsurface utilities locator. UPRR personnel will be consulted for potential subsurface hazards. Two fiber optic cables owned by MCI and Sprint within OU S-6 will be relocated to OU S-5. At this time, other utilities that may be present within OU S-6 are unknown.

7.2.2 Excavation and Waste Handling Activities

This section discusses all excavation and waste handling activities. Excavation and waste handling activities include removal of the slag and slag-impacted soil, transport to the designated stockpile area, stockpiling, and offsite transport of the excavated material to the disposal facility. Excavation and waste handling activities are discussed separately for the portion of OU S-6 to be occupied by the light rail tracks and the portion of OU S-6 to be developed as passenger stations.

Excavation Activities - Light Rail Tracks

Slag and slag-impacted soil will be excavated from the entire length of OU S-6 (Figure 2). Excavation equipment will be at the contractor's discretion but is anticipated to include a front end loader and/or a backhoe. The maximum depth of the excavation is dependent on the thickness of the slag and collateral soil (the thin zone where ballast has mixed with the underlying soil). An additional 2/3-foot of addendum soil will be removed following removal of slag and collateral soil. Removal of addendum soil will be limited to a 15-foot width directly beneath the UPRR mainline track. The total excavation depth will be visually determined in the field and is not anticipated to exceed 1-1/2 to 2 feet bgs. The excavated material will be temporarily stockpiled along the excavation, then loaded into dump trucks and covered for transportation to the designated stockpile area in OU S-5 (Figure 4).

Excavation Activities - Passenger Station Areas

Some additional excavation may be necessary in the passenger station areas to achieve restricted land use RAOs. Areas where additional excavation may occur are shown on Figure 6. Excavation in the areas is anticipated to follow the footprint of the station and extend initially approximately 1-1/2 feet below the slag. Additional soil excavated from these areas will be transported to the designated stockpile area and stockpiled separately from slag and slag-impacted soil.

Soil Confirmation Sampling and Analysis Plan - Passenger Station Areas

Following additional excavation in the passenger station areas, soil confirmation samples will be collected from the base of the excavation and analyzed for arsenic, lead, and PAHs. No other analyses will be performed unless there is other evidence (i.e. staining, odors, organic vapor monitoring instrument readings) to suggest that other impacts may exist.

A total of eight confirmation samples are proposed to be collected from the City College station area and three from the 21st Street station area. The locations of confirmation samples are shown on Figure 6. The rationale for the number and location of confirmation samples is consistent with the approach used for Phase IIA excavations to remove metals and PAHs from the inactive railyard. The passenger station excavation areas were divided into 50 by 50-feet sections with a single soil sample collected from each section. In this case, the samples are not collected from the center of each section, but are staggered within the sections so that the locations alternate from the west side in one section to the east side in the adjacent section. This approach provides greater lateral coverage of the overall excavation as opposed to a single line of samples collected from the axis of the excavation.

Soil samples will be collected using either a hand-driven sampler fitted with stainless steel rings or by collecting soil with a clean trowel and filling an 8-ounce glass jar. If collected in rings, each ring will be capped and labeled, and placed in an ice chest cooled to a maximum of 4° centigrade. If collected in jars, each jar will be capped with a teflon-lined lid, labeled, and placed in an ice chest cooled to a maximum of 4° centigrade. Chain of custody documentation for each sample will be completed and will accompany the samples to the analytical laboratory. Sample analysis will be performed on a rush-turnaround basis (24 to 48-hours) in case additional excavation is indicated based on sample analysis results.

The results of analysis of confirmation samples will be used to determine if the restricted use RAOs have been met. The determination of whether the RAOs have been met in either of the excavations will be based on a direct comparison of each sample analysis result to the RAOs. If the concentrations of arsenic, lead or PAHs exceed restricted use RAOs, then an additional 6-inches to 1-foot of soil will be removed from the section that exceeds the RAO and another confirmation sample will be collected and analyzed. This procedure will be followed until the RAOs in each section are achieved. This approach is appropriate for relatively small data sets (i.e where n < 20), where a 95% confidence level is to be attained. When n = 8 or 3, any one sample that exceeds the RAO comprises 17.5% or 33%, respectively, of the data. Therefore, in this case, it is more practical to excavate and resample until all samples meet the RAO.

Onsite Transport of Excavated Materials

Dump trucks will transport excavated materials to the designated stockpile area in OU S-5 of the Curtis Park railyard as shown on Figure 4. Trucks will follow prescribed routes from their point of loading to the stockpile area. These travel routes will be presented in the design report. Travel routes will be maintained with water spray to minimize dust generation.

Stockpiling Activities

Excavated materials will be stockpiled in the designated stockpile area in OU S-5 of the Curtis Park railyard (Figure 4). Soil will be stockpiled on visqueen. Stockpiles will be no greater than approximately 60-feet long, 40-feet wide, and 10-feet in height. This equates to a stockpile of approximately 400 yds³. Adequate room will be maintained around the stockpiles for movement of loading equipment. The stockpile area will be maintained with water spray to minimize dust generation during dumping, loading into railcars, and by general vehicular traffic in this area.

Stockpile Profiling

For stockpile profiling, each stockpile will be divided into four quadrants and sampled from four locations, within each quadrant. The four individual samples from each quadrant will be composited for a total of four composite samples per stockpile. The stockpile composite samples will be analyzed for the required constituents per the direction of the disposal facility. Stockpiles will be marked regarding their status and will not be released for loading and offsite transport until the results of analysis of stockpile samples are received and evaluated. If the results of analysis indicate that a stockpile contains hazardous waste as defined under the Resource Conservation and Recovery Act (RCRA), the stockpile will be marked to show that treatment (stabilization) is required prior to loading. Any material that is treated for stabilization must be resampled following stabilization to confirm that the concentrations of the constituents of concern do not exceed RCRA hazardous levels.

Soil stockpiles from additional soil excavation in passenger station areas will be maintained separately from other stockpiles. If composite samples from these, or any, stockpiles pass Title 22 hazardous waste criteria (i.e. concentrations of metals are less than their respective total or soluble threshold limit concentrations) then this material may be disposed of at a local landfill as opposed to being transported out of state to ECDC.

Loading Activities

When a sufficient volume of excavated material has been stockpiled and cleared for offsite transport, rail cars will be staged in the loading area (Figure 4). Loading activities will be conducted using a front end loader equipped with a bucket scale. It will be the responsibility of the contractor to avoid overloading or significantly underloading railcars. Upon completion of loading, railcars will be covered with tarps and secured prior to offsite transport.

Cross-Contamination Controls

It will be the responsibility of the contractor to minimize the spread of contamination across the site. All loads will be covered and secured prior to leaving the excavation area and transporting to the designated stockpile area in OU S-5. Excess material on the sides of trucks will be removed in the loading area prior to travel to minimize spread of slag and slag-impacted soil.

Dust Control

Dust controls will be implemented during all field activities to minimize exposure of on-site personnel and off-site residents to potentially contaminated dust. At a minimum, a water truck and low-pressure controlled watering will be used to control dust during preliminary field activities and during excavation, loading and stockpiling activities. Air monitoring will be used to evaluate dust control measures. Air monitoring activities are discussed below.

Air Monitoring

Air monitoring will be conducted to ensure that no adverse impacts to air quality occur in the surrounding area during the excavation activities. High volume samplers, placed upwind and downwind of site activities will collect total suspended particulate (TSP) samples for TSP and arsenic and lead analyses. A meteorological station will monitor wind direction and wind velocity. Real-time dust monitoring will be performed by personnel overseeing removal activities using hand-held monitoring instruments.

Waste Manifests and Bill-of-Lading Forms

Manifests and bill-of-lading forms will be completed by UPRR's contractor for each railcar and/or truck.

7.2.3 Post Excavation Activities

Post excavation activities are conducted upon completion of excavation and off-site transport of the excavated materials. These activities include the following:

Waste Manifests and Bill-of-Lading Forms

The disposal facility will send waste manifests and bill-of-lading forms with confirmed weights of each load of material to UPRR for their records. Copies of these forms will be forwarded to SRTD by UPRR.

Reporting

Upon completion of all work, a Removal Action Report will be prepared and submitted to the DTSC. The Removal Action Report will include a description of field procedures, a tabular summary of analytical data (for the passenger station areas), the volume of slag and soil removed, chain-of-custody documentation, the laboratory data sheets, data quality assurance reports, and will describe any unanticipated contamination encountered and removed. A contingency plan for dealing with unanticipated contamination is presented in Section 7.2.4.

7.2.4 Contingency Plan for Unanticipated Contamination

This section presents the contingency plan for addressing unanticipated soil contamination that may be encountered during excavation of slag in OU S-6. The purpose of this contingency plan is to provide a set of procedures to ensure that unanticipated contamination is handled in a manner consistent with the RAP while expediting actions in order to limit construction delays. With a DTSC-approved contingency plan in place prior to excavation of slag, unanticipated contamination can be addressed without stopping work to develop a plan and obtain DTSC approval. This contingency plan applies to excavation activities both where the light rail tracks will be constructed as well as the passenger station areas. Additionally, the contingency plan applies only to unanticipated contaminants addressed in the RAP where appropriate cleanup levels have been established.

The most likely contamination to be encountered during excavation of slag in the ROW is heavier-end petroleum hydrocarbons such as diesel or Bunker C fuel. The RAP sets forth RAOs for petroleum hydrocarbons as gasoline and diesel, but not for Bunker C. The RAO for diesel is 1,000 mg/kg and the RAO for gasoline is also 1,000 mg/kg (for any area outside the Oil House Area), however gasoline is not anticipated to be encountered in the ROW. Therefore, for the purposes of this contingency plan, any excavation to remove unanticipated petroleum hydrocarbon-impacted soil is based on the RAO for diesel of 1,000 mg/kg.

Identification and Assessment of Contamination

Unanticipated contamination will typically be identified during excavation by either visual observation, detection of odors, or by monitoring with an organic vapor detection instrument. If unanticipated petroleum hydrocarbon contamination is encountered, a preliminary assessment of the lateral and vertical extent will be made. At a minimum, the preliminary assessment will consist of mapping and describing the location, nature, and observed extent of the contamination and photographing the contamination. Sampling and analysis of soil is not proposed unless the lateral and vertical extent is believed to be significantly greater than the excavation planned for removal of slag and addendum soil or if visual evidence of potential contamination is observed, but the nature of the contamination is not readily discernable (i.e. something other than petroleum hydrocarbons). In this case, a sample may be collected and analyzed on an expedited basis to identify the contamination and determine if removal is necessary or if the contamination can be left in place.

Excavation

Petroleum hydrocarbon-impacted soil will be excavated using a backhoe or similar appropriate equipment. Excavations for unanticipated contamination will be managed consistent with the overall RAW (i.e. health and safety controls, dust control, and loading of soil into trucks).

Excavated materials will be transported to the stockpile area in the Curtis Park railyard and placed in a separate stockpile. Stockpiles of petroleum hydrocarbon-impacted soil will be maintained separately from the slag stockpiles in the event that profiling results indicate petroleum-impacted soil can be disposed of at an alternative disposal facility such as Forward in Manteca or other Class II landfill. Transportation, stockpiling, and stockpile profiling procedures will be the same as for slag and addendum soil.

If an excavation is five or more feet deep, the sidewalls will be sloped to a minimum 1:1 slope ratio to prevent collapse. All open excavations will be secured at the end of each work day using barricades and/or fencing, as appropriate.

Confirmation Sampling and Analysis Plan

Following excavation of contaminated soil, confirmation samples will be collected from the excavation and analyzed for TPH by EPA Method 8015M. The number and location of confirmation samples will be determined in the field based on the extent of the contamination. Samples collection procedures will be the same as described for confirmation sampling in the passenger station areas. A minimum of one sample will be collected from the base of each excavation and one sample from the approximate midpoint of each sidewall (assuming excavations will be four-sided polygons. If contamination is relatively shallow and a given excavation does not exceed one foot in depth, then a minimum of one sample will be collected from the base and no sidewall samples will be collected. Soil sampling equipment will be washed with an appropriate detergent solution and rinsed with distilled water between each use.

Confirmation soil samples will be analyzed on a 24-hour rush turnaround basis so that decisions regarding further excavation or closing of an excavation can be made as soon as possible. The results of confirmation samples will be compared to the RAO for TPH as diesel of 1,000 mg/kg as specified in the RAP to determine if further excavation is necessary.

Reporting

The results of excavation to remove unanticipated contamination and confirmation soil sampling results will be presented in the Removal Action Report described in Section 7.2.3.

8.0 SCHEDULE

Slag removal activities are anticipated to occur intermittently between the start of SRTD's light rail construction in April 2000 and the scheduled completion of UPRR track replacement and realignment activities by December 2000. Specific details regarding actual construction sequencing for the slag removal activities will be available after the SRTD construction contract is awarded in February 2000 and will be presented in the design document.

9.0 REFERENCES ·

- Battelle, 1995, Draft Final Report, Determination of the Bioavailability of soluble Arsenic and Arsenic in Slag Following Oral Administration in Microswine, December.
- Dames & Moore, 1988, Phase I Remedial Investigation/Feasibility Study Report, Union Pacific Railroad Yard, Sacramento, California, May.
- Dames & Moore, 1990, Baseline Health Risk Assessment, Appendix F of the Draft Remedial Investigation Report, Union Pacific Railroad, Sacramento Shops Yard, March.
- Dames & Moore, 1991a, Remedial Investigation/Feasibility Study Report, Union Pacific Railroad Yard, Sacramento, California, May.
- Dames & Moore, 1991b, Revised baseline Health Risk Assessment, Union Pacific Railroad Yard, Sacramento, California, October.
- Dames & Moore, 1991c, Addendum Remedial Investigation/Feasibility Study Report, Union Pacific Railroad Yard, Sacramento, California, November.
- Dames & Moore, 1992, Feasibility Study Supplement, Union Pacific Railroad Yard, Sacramento, California, October.
- Dames & Moore, 1995a, Air Monitoring Report, Soil Operable Unit S-5, Union Pacific Railroad Yard, Sacramento, California, February.
- Dames & Moore, 1995b, Final Remedial Action Plan, Union Pacific Railroad Yard, Sacramento California, June.
- Dames & Moore, 1999, Assessment of Additional PAH Soil Impacts, Union Pacific Railroad Company Sacramento (Curtis Park) Railyard, letter report dated March 12.
- Walsh & Associates, 1992, Sources, Speciation, and Dissolution Kinetics of Arsenic and Lead, Union Pacific Railroad Yard, Sacramento, California, September.

ables

TABLE 1 HISTORICAL SOIL ANALYTICAL DATA OPERABLE UNIT S-6 UNION PACIFIC CURTIS PARK RAILYARD SACRAMENTO, CALIFORNIA

Sample ID	ATB-13	ATB-14	ATB-14	ATB-15	ATB-16	ATB-17	ATB-18	ATB-19	ATB-20	ATS-20(1)
Date	12/16/91	12/16/91	12/16/91	12/16/91	12/16/91	12/16/91	12/16/91	12/16/91	12/16/91	01/08/92
Depth (ft)	4.50-5.00	5.50-6.00	10.50-11.00	5.50-6.00	5.50-6.00	2.00-3.00	3.00-3.50	3.50-4.00	2.50-3.00	(Surface)
METALS (mg/kg)										
Arsenic (As)	8.2	7.9	3.2	7.1	5.0	545.0	3.1	< 2.5	14.0	109
Lead (Pb)	40.0	8.1	6.2	7.0	6.0	5.8	9.0	8.0	6.0	811
ORGANICS (mg/kg)										
1,2-Dichlorobenzene	< 0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005	NA
1,3-Dichlorobenzene	<0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	<0.0005	NA
1,4-Dichlorobenzene	< 0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005	< 0.0005	NA
Benzene	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005	< 0.0005	<0.0005	< 0.0005	NA
Chlorobenzene	< 0.0005	<0.0005	<0.0005	< 0.0005	<0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005	NA
Ethlybenzene	<0.0005	< 0.0005	< 0.0005	<0.0005	<0.0005	< 0.0005	<0.0005	<0.0005	< 0.0005	NA
Toluene	< 0.0005	< 0.0005	<0.0005	< 0.0005	<0.0005	<0.0005	<0.0005	< 0.0005	<0.0005	NA
Xylenes	<0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005	<0.0005	<0.0005	<0.0005	< 0.0005	NA

NOTES:

⁽¹⁾ Surface Sample. Sample analysis includes grain size >0.074 and <4.76 millimeters.

< = Constituent below detection limits.

 $[\]cdot$ NA = Not Analyzed.

TABLE 2 CALCULATED VOLUMES AND TONNAGES OF EXCAVATED MATERIAL **OPERABLE UNIT S-6** UNION PACIFIC CURTIS PARK RAILYARD SACRAMENTO, CALIFORNIA

Station Number	Will Width of Ballast (feet)	D1 Average Depth of Ballast (inches)	W2 Width of Ballast (feet)	D2 Average Depth of Ballast (Inches)	D3 Average Depth of Collateral Sol to be Removed (inches)	Width of addendum soil to be nemoved (IT)	Volume of addendum soil to be removed (cy)	Volume of Collateral Soil to be removed (CY)	Length of Baltested Section (feet)	Percent Slag (%)	Volume Stag (CY)	Percent Angular Gray Ballast (%)	Volume Gray Battast (CY)	Percent White/Telc Bellast (%)	Volume White/Talc Ballast (CY)	Total Volume o Material (Siag, Ballast, Collateral Soll) to be removed (cubic yards) ¹	Weight of Material to be removed (tons)	Number of Tracks to be Realigned
81+00	8	5	10	1	2	5	0.61	0.56	- 5	20%	0.15	40%	0.31	40%	0.31	1,33	1,69	1
82+00	- 8	4	8	+	2	15	35.93	9.68	98	20%	2.42	60%	7.26	20%	2,42	21.78	27.83	1
83+00	8	4	8	1	2	15	36.67	9.88	100	20%	2.47	60%	7.41	20%	2.47	22.22	28.40	1
84+00	- 8	4	8	1	2	15	36.57	9,88	100	20%	2.47	60%	7.41	20%	2.47	22.22	28.40	1
85+00	8	4	8	1	2	15	36.67	9.88	100	20%	2.47	60%	7.41	20%	2.47	22.22	28.40	1
86+00	8	4	8		2	15	36.67	9.88	100	20%	2.47	60%	7.41	20%	2.47	22.22	28.40	2
87+00	- 8	4	8		2	15 30	36.67 73.33	9.88 64.81	100	20% 75%	2.47 101.85	60% 20%	7.41 27.16	20% 5%	2.47 6.79	22.22	28.40 294.04	2
88+00 89+00	50	8	20	2	3	30	73.33	64.81	100	75%	101.85	20%	27,16	5%	6.79	200.62	294.04	2
90+00	50	8	20	-2	3	30	73.33	64.81	100	75%	101.85	20%	27.16	5%	6.79	200.62	294.04	3
91+00	60	8	10	2	3	30	73.33	64.81	100	75%	115.74	20%	30.86	5%	7.72	219.14	323.04	3
92+00	60	8	10	2	3	30	73.33	64.81	100	75%	115.74	20%	30.86	5%	7.72	219.14	323.04	2
93+00	55	8	20	2	3	25	61.11	69,44	100	80%	118.52	15%	22.22	5%	7.41 .	_ 217.59 _	322.69	2
94+00	55		20	- 2	3	. 25	61,11	69.44	- 100	80%	118.52	15%	22.22	5%	7.41	217.59	322,69	2
95+00	55	8	20	2	3	25	61.11	69.44	100	80%	118.52	15%	22.22 12.96	5% 0%	7,41	217.59 120.37	322.69 182.33	2
96+00	45	6	10	1	2	25 25	61.11	33.95 33.95	100	85% 85%	73.46 73.46	15%	12.96	0%	0.00	120.37	182.33	
97+00 98+00	45 45	6	10		2	25	61,11	33.95	100	85%	73,46	15%	12.96	0%	0.00	120.37	182.33	- ; -
99+00	45	6	10	- 	2	25	61.11	33,95	100	85%	73.46	15%	12.96	0%	0.00	120.37	182.33	- i - l
100+00	40	- 6	10		2	25	61,11	30,86	100	80%	61.73	20%	15.43	0%	0.00	108.02	161,67	1
101+00	40	6	10	1	2	25	61.11	30,86	100	80%	61.73	20%	15.43	0%	0.00	108,02	161,67	1
102+00	40	6	10	1	2	25	61,11	30.86	100	80%	61.73	20%	15.43	0%	0.00	108:02	161.67	1
103+00	40	6	10	1	2	25	61.11	30,86	100	80%	61.73	20%	15,43	0%	0.00	108.02	161,67	
104+00	55	3	10	_	1	25 30	61,11 73,33	20.06	100	60%	32.41 32.41	25% 25%	13.50 13.50	15%	8.10 8.10	74.07 74.07	105.58 105.58	1 1
105+00 106+00	55 55	3	10	1		30	73.33	20.06	100	60%	32.41	25%	13.50	15%	8.10	74.07	105.58	-
107+00	55	3	10	- ; -	 	30	73.33	20.06	100	60%	32.41	25%	13.50	15%	8.10	74.07	105.58	- i
108+00	55	3	10	i	1	30	73.33	20.06	100	80%	43.21	15%	8.10	5%	2.70	74.07	111.05	1
109+00	55	3	10	1	1	30	73.33	20.06	100	80%	43.21	15%	8.10	5%	2,70	74.07	111.05	1
110+00	55	3	10	1	1	30	73,33	20.06	100	80%	43.21	15%	8.10	5%	2.70	74.07	111.05	1
111+00	55	3	10	1	1	30	73.33	20.06	100	80%	43.21	15%	8.10	5%	2.70	74.07	111.05	- 1
112+00	55	3	10	1	1.	30	73.33	20.06	100	80% 80%	43.21 43.21	15% 15%	8.10	5% 5%	2.70	74.07 74.07	111.05 111.05	
113+00 114+00	55	3	10	1 1	1	30	73.33	20.06	100	80%	43.21	15%	8.10	5%	2.70	74.07	111.05	-
115+00	55	3	10	<u> </u>	 	30	73.33	20.06	100	80%	43.21	15%	8.10	5%	2.70	74.07	111.05	i
116+00	55	3	10	- ;	<u> </u>	30	73.33	20.06	100	80%	43.21	15%	8.10	5%	2.70	74.07	111.05	1
117+00	55	3	10	1	1	30	73,33	20.06	100	80%	43.21	15%	8.10	5%	2.70	74.07	111.05	
118+00	55	3	10		1	30	73.33	20.06	100	80%	43.21	15%	. 8.10	5%	2.70	74.07	111.05	
119+00	55	3	10	1	1	30	73.33	20.06	100	80%	43.21	15%	8.10	5% 25%	2.70	74.07 64.81	111.05 91.15	
120+00	70	2	0	00	1	30 30	73.33	21.60 21.60	100	60% 60%	25.93 25.93	15% 15%	6.48 6.48	25%	10.80	64.81	91.15	
121+00	70	2	0	0	 - 	30	73.33	21.60	100	60%	25.93	15%	6.48	25%	10.80	64.81	91.15	
122+00	70	2	0	0	1 -	25	61.11	21.60	100	60%	25.93	15%	6.48	25%	10.80	64,81	91.15	- i -
124+00	70	2	-	0	1	25	61.11	21.60	100	60%	25.93	15%	6.48	25%	10.80	64.81	91.15	1
125+00	70	2	0	ŏ	1	25	61.11	21.60	100	60%	25.93	15%	6.48	25%	10.80	64.81	91.15	1
126+00	70	2	0	0	1	25	61.11	21.60	100	60%	25.93	15%	6.48	25%	10.80	64.81	91.15	11
127+00	50	2	00	0	1	25	61.11	15.43	100	60%	18.52_	15%	4.63	25%	7.72	46.30	65.10	1
128+00	50	2	0	0	1	25	61.11	15.43	100	60%	18.52	15%	4.63	25%	7.72	46.30	65.10	2
129+00	50	2	0	0	1	25	61.11	15,43	100	60%	18.52	15%	4.63	25%	7.72	46,30	65.10	2
					TOTAL:		3,068	1,370	(cy)				(elaa	collateral s	TOTAL:	4,518 (cy)	6,632 (ton)	J
							3,851	1,720	(ton)				(siag,	collateral S	on, DanaSt)	(cy)	(ton)	

Notes:

1. Includes collateral soil, but not addendum soil

2. Estimated Density of Pure Slag Ballast: 125 pcf or 1.69 tons/cy

3. Estimated Density of Pure White Ballast: 85 pcf or 1.15 tons/cy

4. Estimated Density of Soil: 93 pcf or 1.26 tons/cy

5. Depth of Addendum Soil to be removed: 0.66 feet or 8 inches.

Total In-Place Volume Removed:

7,586 TON

TABLE 3

ANALYTICAL DATA SUMMARY **OPERABLE UNIT S-6**

PASSENGER STATION AREA SOIL SAMPLING UNION PACIFIC CURTIS PARK RAILYARD

SACRAMENTO, CALIFORNIA

	RAO		CITY COLLEGE STATION AREA											
ANALYTE	Restricted Unrestricted Land Use Land Use	Sample ID No. Sample Date Duplicate Units	STNCC-01-1.0 12/22/99	STNCC-01-3.0 12/22/99	STNCC-01-9.0 12/22/99	STNCC-02-1.0 12/22/99	STNCC-02-3.0 12/22/99	STNCC-02-7.0 12/22/99	STNCC-03-1.0 12/22/99	STNCC-03-3.0 12/22/99	STNCC-03-9.0 12/22/99	STNCC-04-1.0 1/3/00	STNCC-04-3.0 1/3/00	STNCC-04-4.0 1/3/00 STNCC-04-3.0
NON-CARCINOGENIC PAI	 	Units												
Acenaphthene	T (CPA 02/U SIM)	CANADAM SECONDS	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	400	THE RESERVE OF THE PARTY OF THE		Links, Committee
Acenaphthylene		mg/kg mg/kg	<0.005	<0.005	<0.005	<0.005	<0.005 <0.005	<0.005	<0.005 <0.005	<0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005
Anthracene		mg/kg	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.018	<0.005	<0.005	<0.005	<0.005	<0.005
Benzo(q,h,i)perylene		mg/kg	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.018	<0.005	<0.005	<0.005	<0.005	<0.005
Fluoranthene		mg/kg	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.040	<0.005	<0.005	<0.005	<0.005	<0.005
Fluorene		mg/kg	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005
Naphthalene		mg/kg	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Phenanthrene		mg/kg	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	0.013	<0.005	<0.005	<0.005	<0.005	<0.005
Pyrene		mg/kg	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	0.033	<0.005	< 0.005	<0.005	< 0.005	<0.005
Total ncPAH's	100	mg/kg	0.0225	0.0225	0.0225	0.0225	0.0225	0.0225	0.130	0.0225	0.0225	0.0225	0.0225	0.0225
CARCINOGENIC PAH (EP.	A 8270 SIM)				100						14			
Benz(a)anthracene		mg/kg	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.013	<0.005	<0.005	<0.005	<0.005	<0.005
Benzo(a)pyrene		mg/kg	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.014	<0.005	<0.005	<0.005	<0.005	<0.005
Benzo(b)fluoranthene		mg/kg	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.045	<0.005	<0.005	<0.005	<0.005	<0.005
Benzo(k)fluoranthene		mg/kg	<0.005	<0.005	<0.005	<0.005	· <0.005	<0.005	0.015	<0.005	<0.005	<0.005	<0.005	<0.005
Chrysene		mg/kg	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.023	<0.005	<0.005	<0.005	<0.005	<0.005
Dibenzo(a,h)anthracene		mg/kg	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Indeno(1,2,3-cd)pyrene		mg/kg	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.018	<0.005	<0.005	<0.005	<0.005	<0.005
Total cPAH's	0.042	mg/kg	0.0175	0.0175	0.0175	0.0175	0.0175	0.0175	0.131	0.0175	0.0175	0.0175	0.0175	0.0175
METALS (EPA 6010B)						3 .		324		C2574000	31242			
Arsenic	55 8	mg/kg	240	<5	47	150	< 5	<5	190	31	<5	29	19	25
Lead	950 220	mg/kg	310	8.9	16	70	7.4	11	470	120	12	<5	5,6 JJf	17 Jf
TPH (EPA 8015M Extracta		14 (200)	1457646		A STATE OF THE PARTY OF THE PAR	1		302-01/27/2			20.00	100		
Bunker Oil	NA	mg/kg	<13	<13	<13	<13	<13	<13	<26	<13	<13	<13	<13	<13
Diesel	1,000	mg/kg	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	5.8 x
Fuel Oil	NA	mg/kg	<13	<13	<13	<13	<13	<13	<26	<13	<13	<13	<13 ·	<13
Hydraulic Oil	NA	mg/kg	<13	<13	<13	<13	<13	<13	<26	<13	<13	<13	<13	<13
Jet Fuel	NA 	mg/kg	<1	<1	<1	<1	<1	<1	<2	<1	<1	· <1	<1	<1
Kerosene	· NA	mg/kg	<1	<1	<1	<1 -10	<1	<1	<2	<1	<1	<1	<1	<1
Motor Oil	NA 	mg/kg	22	<13	<13	<13	<13	<13	64	<13	<13	<13	<13	<13
Stoddard Solvent	NA	mg/kg	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<1

Notes: RAO - Remedial Action Objective PAH - Polynuclear Aromatic Hydrocarbon

TPH - Total Petroleum Hydrocarbon

NA - Not Applicable

| Jm - Result was qualified by Dames & Moore QA/QC Group as estimated due to a matrix spike/matrix spike duplicate recovery failure.
| Jif - Result was qualified by Dames & Moore QA/QC Group as estimated due

to field duplicate imprecision.

xi - Chromatographic pattern not typical of diesel fuel as qualified by laboratory.

TABLE 3 ANALYTICAL DATA SUMMARY

OPERABLE UNIT S-6

PASSENGER STATION AREA SOIL SAMPLING UNION PACIFIC CURTIS PARK RAILYARD

SACRAMENTO, CALIFORNIA

ANALYTE Restricted Unrestricted Land Use Land Use Land Use Duplicate Units Units NON-CARCINOGENIC PAH (EPA'8270 SIM) Acenaphthene mg/kg <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.0	\$\begin{array}{c} \text{STN21-01-9.0} \text{STN21-0} \\ \text{12/22/99} \text{\$\text{21/22}\$} \\ \text{\$<0.005} \\ \text
ANALYTE Restricted Unrestricted Land Use Land Use Land Use Duplicate Units WON-CARCINGENIC PAH (EPA'2270 SIM)) Acenaphthene Mg/kg <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.	12/22/99 12/22/ <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005
Land Use Land Use Duplicate Units Units	<pre><0.005 <0.005 <0.0</pre>
Units Unit	<0.005
NON-CARCINOGENIC PAH (EPA'8270 SIM)	<0.005
Acenaphthene mg/kg <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0	<0.005
Acenaphthene mg/kg <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0	<0.005
Acenaphthylene mg/kg <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005
Anthracene mg/kg <0.005 0.007 0.017 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 0.01 <0.005 0.03 <0.005 0.00 <0.005 0.00 <0.005 0.02 <0.005 0.02
Benzo(g,h,i)perylene mg/kg <0.005 0.014 0.017 <0.005 <0.005 <0.005 <0.005 <0.005 <0.009 Fluoranthene mg/kg <0.005	<0.005
Fluoranhene mg/kg <0.005 0.085 0.030 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.00	<0.005 <0.005 <0.005 <0.005 <0.005 <0.002 <0.005 0.02
Naphthalene mg/kg <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.	<0.005 <0.00 <0.005 0.02 <0.005 0.02
Naphthalene mg/kg <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.	<0.005 0.02 <0.005 0.02
Pyrene mg/kg <0.005 0.067 0.032 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 0.02
Total ncPAH's 100 mg/kg 0.0225 0.234 0.118 0.0225 0.0225 0.0225 0.0225 0.0225 0.0225 0.0225 0.0225 0.029	0.0225 0.12
CARCINOGENIC PAH (EPA: 8270 SIM)	
Benz(a)anthracene mg/kg <0.005 0.020 0.013 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 0.02
Benzo(a)pyrene mg/kg <0.005 0.021 0.018 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 0.016
Benzo(b)fluoranthene mg/kg <0.005 0.037 0.042 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 0.02
Benzo(k)fluoranthene mg/kg <0.005 0.015 0.013 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 0.009
Chrysene mg/kg <0.005 0.029 0.022 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0	<0.005 0.018
Dibenzo(a,h)anthracene mg/kg <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.0	<0.005 <0.00
Indenc(1,2,3-cd)pyrene mg/kg <0.005 0.014 0.017 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.005	<0.005 0.010
Total cPAH's 0.042 mg/kg 0.0175 0.139 0.128 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0175 0.0225	0.0175 0.098
METALS (EPA 6010B)	# JAP 19 544 54
Arsenic 55 8 mg/kg 6.4 21 33 25 310 7.2 11 <5 300 72	<1 55 J
Lead 950 220 mg/kg 6.8 9.5 23 11 95 7.6 12 6.7 85 82	7.6 8.7
	100
Bunker Oil NA mg/kg <13 <13 <13 <13 <13 <13 <13 <13 <13 <13	<13 <13
Diesel 1,000 mg/kg <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <1
Fuel Oil NA mg/kg <13 <13 <13 <13 <13 <13 <13 <13 <13 <13	<13 <13
Hydraulic Oil NA mg/kg <13 <13 <13 <13 <13 <13 <13 <13 <13 <13	<13 <13
JetFuel NA mg/kg <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <1
Kerosene NA mg/kg <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <1
Motor Oil NA mg/kg <13 <13 <13 <13 <13 <13 <13 <13 <13 <13	<13 <13
Stoddard Solvent NA mg/kg <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <1

Notes:

- RAO Remedial Action Objective
- PAH Polynuclear Aromatic Hydrocarbon
- TPH Total Petroleum Hydrocarbon
- NA Not Applicable
- Um Result was qualified by Dames & Moore OA/QC Group as estimated due to a matrix spike/matrix spike duplicate recovery failure.

- | If Result was qualified by Damee & Moore QA/QC Group as estimated due to field duplicate imprecision.
 | Chromatographic pattern not typical of dissel fuel as qualified by laboratory.

TABLE 3

ANALYTICAL DATA SUMMARY

OPERABLE UNIT S-6

PASSENGER STATION AREA SOIL SAMPLING UNION PACIFIC CURTIS PARK RAILYARD SACRAMENTO, CALIFORNIA

	F	AO		21st STREET ST	TATION AREA				
			Sample ID No.	STN21-02-5.0	STN21-02-9.0	STN21-03-1.0	\$TN21-03-3.0	STN21-03-9.0	STN21-03-10.0
ANALYTE	Restricted	Unrestricted	Sample Date	12/22/99	12/22/99	1/3/00	1/3/00	1/3/00	1/3/00
	Land Use	Land Use	Duplicate						STN21-03-9.0
			Units	,					ļ
NON CARCINOGENIC PAI	H (EPA 827	6 SIM)	4.0					a gradu al Ari	
Acenaphthene			- mg/kg	<0.005	<0.005	<0.005	<0.005	<0,005	<0.005
Acenaphthylene	Ì		mg/kg	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
Anthracene			mg/kg	<0.005	<0.005	<0:005	<0.005	<0.005	<0.005
Benzo(g.h.i)perylene			mg/kg	<0.005	<0,005	<0.005	<0.005	<0.005	<0.005
Fluoranthene			mg/kg	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Fluorene	l		mg/kg	<0.005	<0.005	. <0.005	<0.005	<0.005	<0.005
Naphthalene			mg/kg	<0.005	<0.005	<0.005	<0.005	<0.005	<0,005
Phenanthrene			mg/kg	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005
Pyrene			mg/kg	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
		100	mg/kg	0.0225	0.0225	0.0225	0.0225	0.0225,	0.0225
CARCINOGENIC PAH (EP	A 8270 SIM)	2.14.14					100	5.44 1 2 4
Benz(a)anthracene			mg/kg	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Benzo(a)pyrene			mg/kg	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Benzo(b)fluoranthene			.mg/kg	<0:005	. <0.005	<0.005	<0.005	<0.005	<0.005
Benzo(k)fluoranthene			mg/kg	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005
Chrysene			mg/kg	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Dibenzo(a,h)anthracene			mg/kg	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005
Indeno(1,2,3-cd)pyrene			mg/kg	<0.005	<0.005	<0.005	<0,005	<0.005	<0.005
Total cPAH's	0.	042	mg/kg	0.0175	0.0175	0.0175	0.0175	0.0175	0.0175
METALS (EPA 60108)				Alast Control					
Arsenic	55	8	mg/kg	18 JJm	<5	23	6.6	8.4	<5
Lead	950	220	mg/kg	11	9.7	71	23	23 JJf	7.0 [Jf
TPH (EPA 8015M Extracta	ble}		(P. Paginga)						
Bunker Oil		VA .	rng/kg	<13	<13	<26	<13	<13	<13
Diesel	1,	000	rng/kg	<1	<1	<2	<1	<1	<1
Fuel Oil		NA.	mg/kg	<13	<13	<28	<13	<13	<13
Hydraulic Oil		NA .	mg/kg	<13	<13	<26	<13 .	<13	<13
Jet Fuel		NA	mg/kg	<1	<1	<2	<1	<1	<1
Kerosene		NA	mg/kg	<1	<1	<2	<1	<1	<1
Motor Oil		NA.	mg/kg	<13	<13	74	<13	15	<13
Stoddard Solvent		NA.	mg/kg	<1	<1	<2	< 1	<1	<1

RAO - Remedial Action Objective

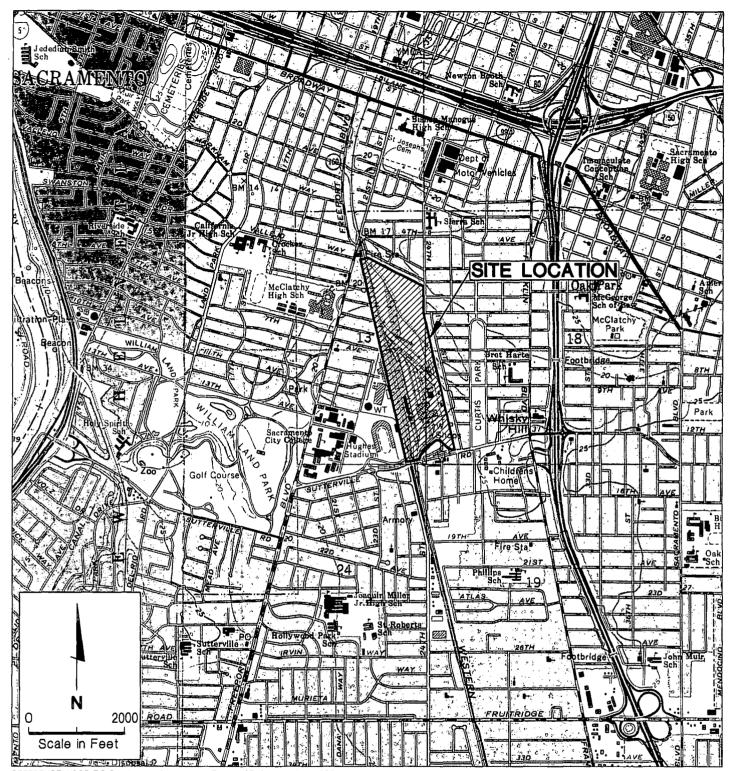
PAH - Polynuclear Aromatic Hydrocarbon

TPH - Total Petroleum Hydrocarbon

|Jm - Result was qualified by Dames & Moore QA/QC Group as estimated due to a matrix spike/matrix spike duplicate recovery failure.

Result was qualified by Dames & Moore QA/QC Group as estimated due

to field duplicate imprecision.

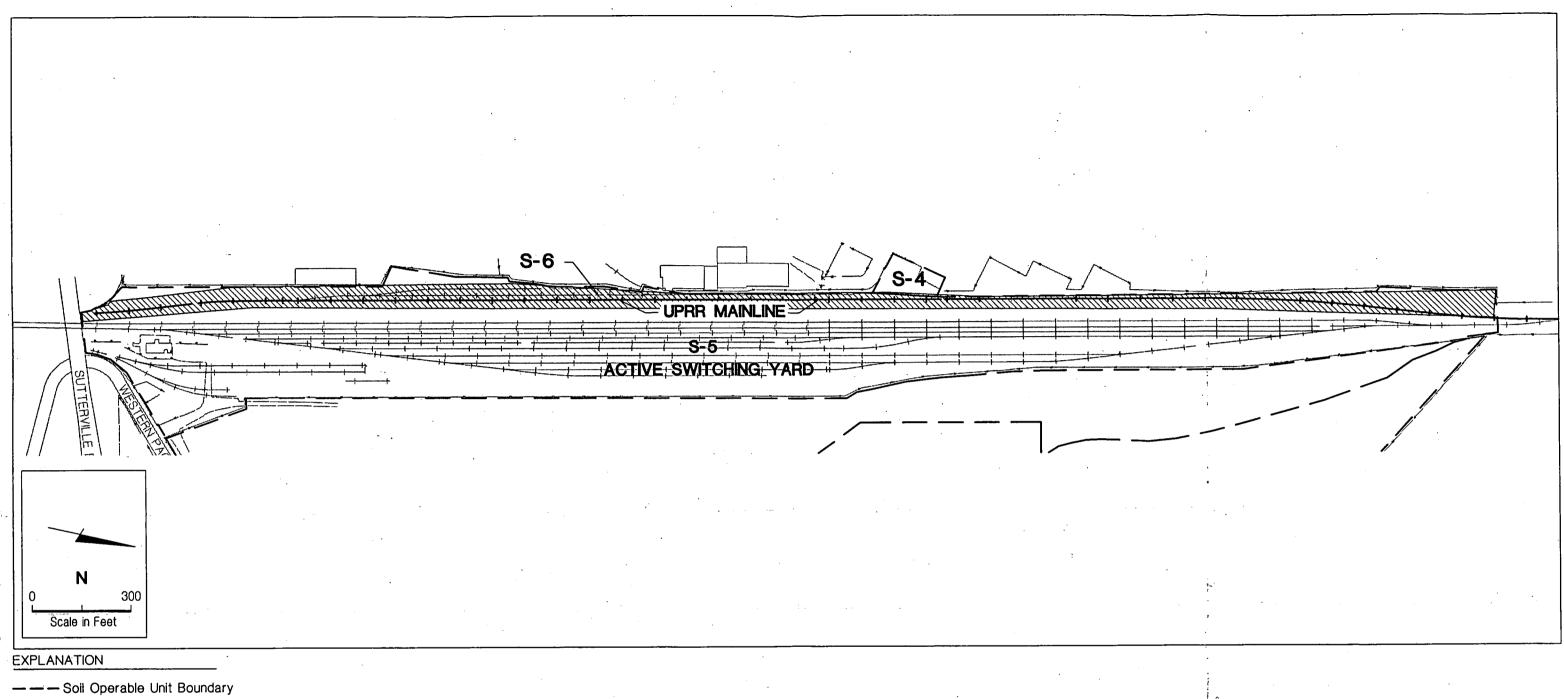

x| - Chromatographic pottern not typical of diesel fuel as qualified by laboratory.

SCREENING OF REMEDIAL ALTERNATIVES OUS-6

OU S-6 UNION PACIFIC CURTIS PARK RAILYARD SACRAMENTO, CALIFORNIA

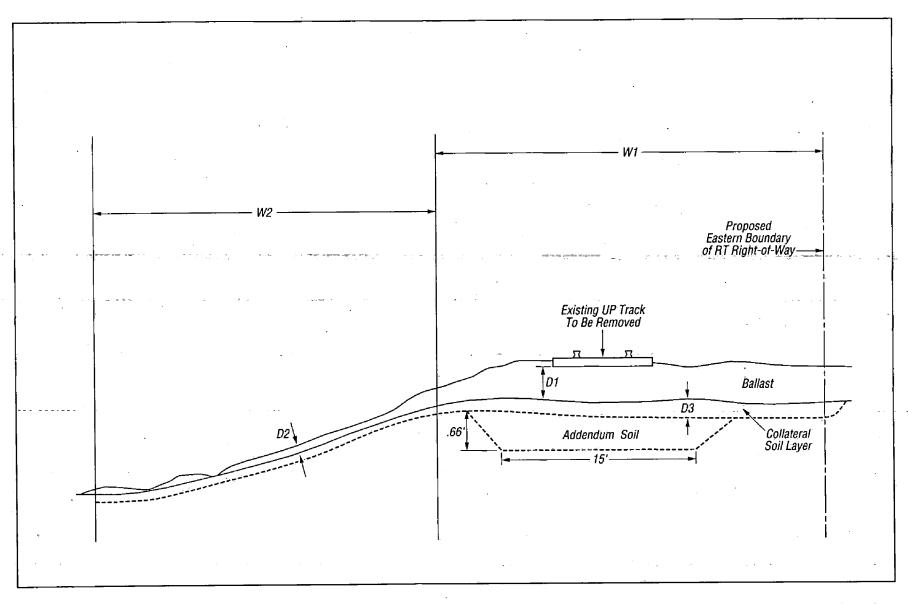
ALTERNATIVE	RELATIVE	RELATIVE	RELATIVE COST	COMMENTS
	EFFECTIVENESS	IMPLEMENTABILITY		
Light Rail Corridor	-			
No Action	Fair to good. – similar to current conditions, but does not provide increased future protection.	Excellent - No action to implement, but not acceptable to SRTD or DTSC.	Excellent – no cost.	Alternative rejected. Does not satisfy requirements of DTSC or SRTD.
RAP/Railyard O&M	Good – provides same level of protection as current and future conditions in the active railyard (OU S-5).	Good – implemented as part of ongoing O&M of the active railyard. Slag covered as new ballast brought in periodically. Should be acceptable to DTSC and public.	Good – no additional cost beyond that for ongoing O&M of active railyard.	Alternative rejected. Does not satisfy requirements of SRTD.
Removal of Visible Slag and Addendum Soil	Good to excellent – removes source of As and Pb in soil and covers potentially impacted remaining soil with new rock ballast.	Fair to good – current plan between SRTD and UPRR.	Fair – approximately \$150,000 for removal, transport to stockpile area, and stockpiling.	Alternative retained.
Passenger Stations				
No Action	Good – similar to current conditions and paving would cover impacts.	Excellent - No action to implement, but not likely to be acceptable to DTSC or public.	Excellent – no cost.	Alternative rejected. Does not satisfy requirements of DTSC or public.
Removal to Restricted Use RAOs	Good – provides appropriate protection to occupants of passenger stations and workers.	Fair – will require additional soil excavation in these areas to meet restricted RAOs.	Fair – additional cost of approx. \$40,000 for excavation, transport to stockpile area, stockpiling, confirmation sampling and analysis, and reporting.	Alternative retained.
Removal to Unrestricted Use RAOs	Good to excellent – would provide greatest level of protection available by removing impacted soil to unrestricted use levels.	Fair – will require additional soil excavation beyond that required to meet restricted use RAOs.	Fair to poor — additional cost of approx. \$67,000 for excav, transport to stockpile area, stockpiling, confirm sampling and analysis, and reporting.	Alternative rejected – additional excavation to meet unrestricted RAOs not necessary for type of land use.

16ures



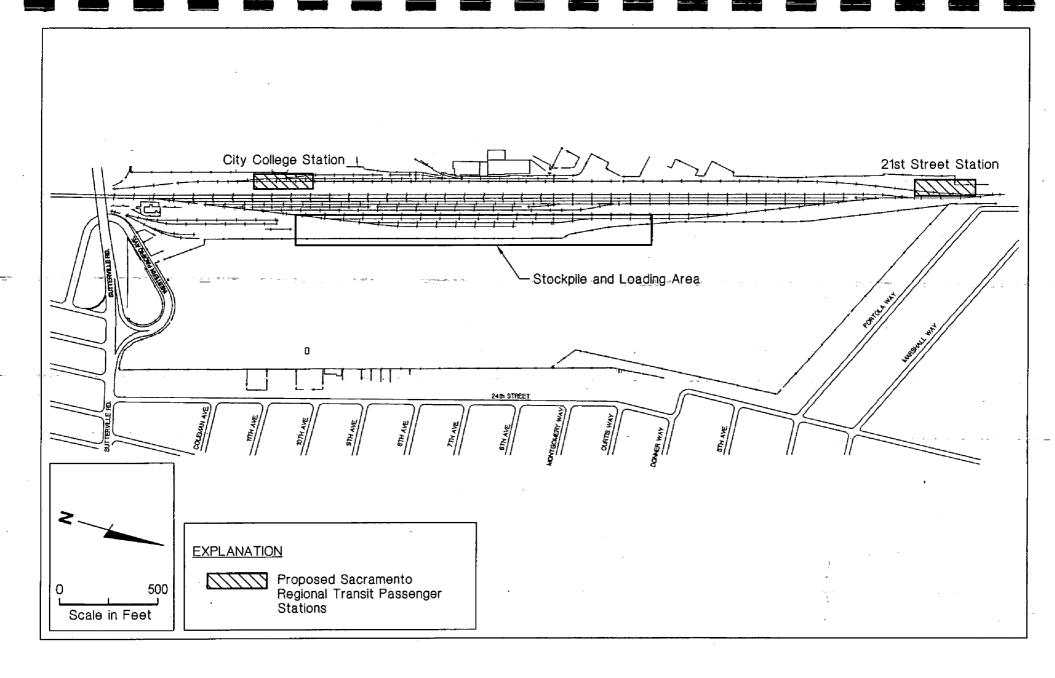
REFERENCE: USGS 7.5 Quadrangle; Sacramento East, 1967, Photorevised 1980 and Sacramento West, 1967, Photorevised 1980

SITE LOCATION MAP


Removal Action Workplan Slag Removal in Operable Unit S-6 Union Pacific Railroad Curtis Park Railyard Sacramento, California

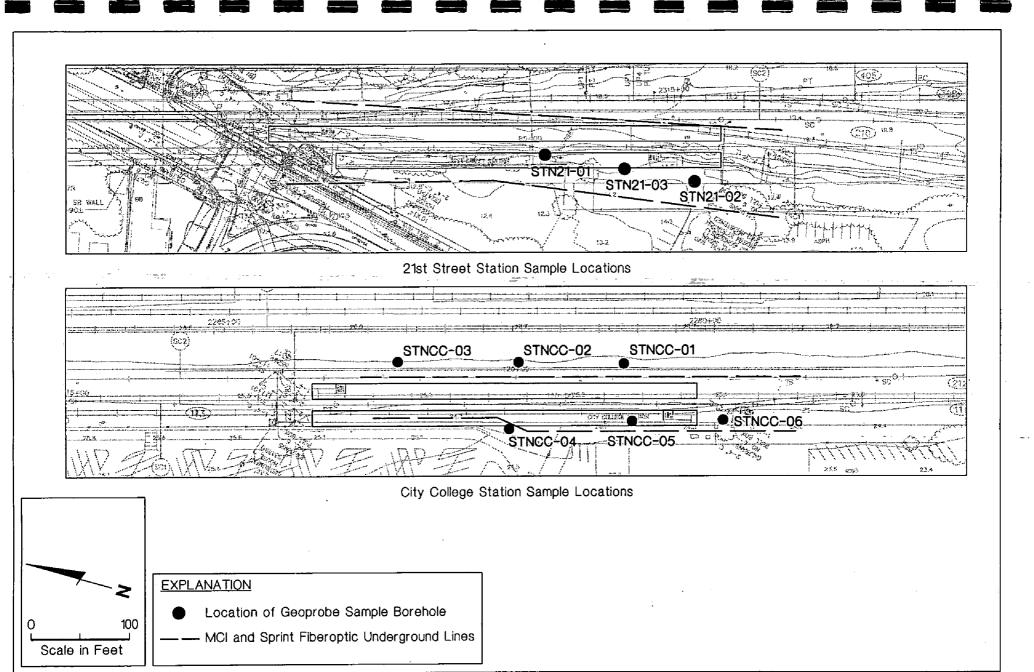
-x-x-Fence

Portion of OU S-5 proposed for delineation as OU S-6

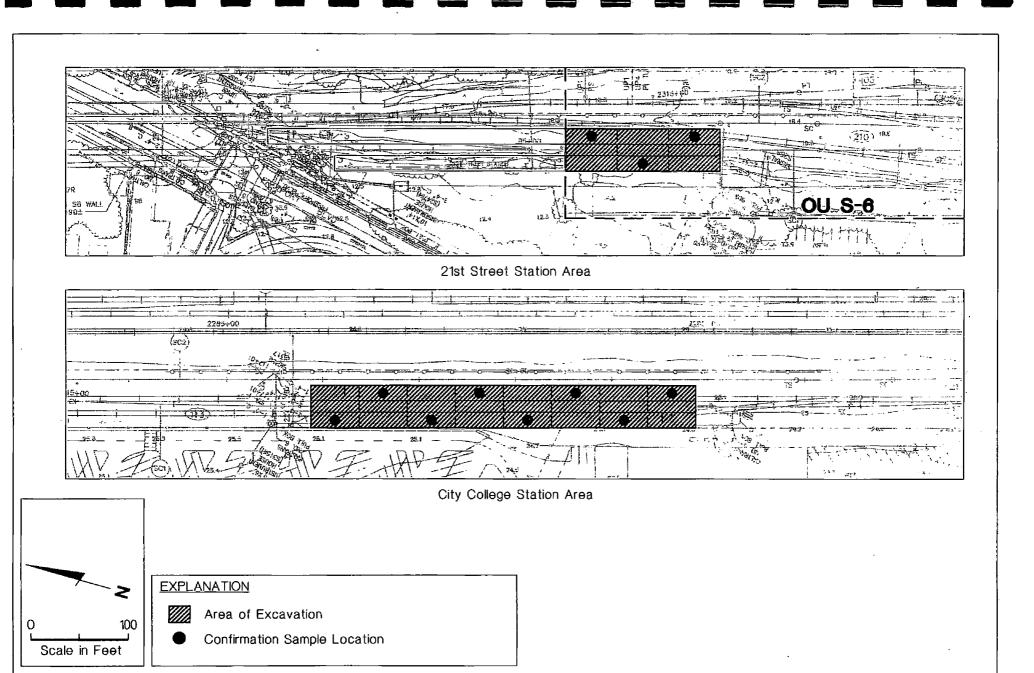

Removal Action Workplan
Slag Removal in Operable Unit S-6
Union Pacific Curtis Park Railyard
Sacramento, California

TYPICAL MAINLINE CROSS SECTION

Removal Action Workplan Slag Removal in Operable Unit S-6 Union Pacific Curtis Park Railyard - Sacramento, California



PASSENGER STATION AREAS/STOCKPILE AND LOADING AREA


Removal Action Workplan Slag Removal in Operable Unit S-6 Union Pacific Curtis Park Railyard Sacramento, CA

PASSENGER AREA SAMPLE LOCATION MAP

Removal Action Workplan Slag Removal in Operable Unit S-6 Union Pacific Curtis Park Railyard Sacramento, CA

PASSENGER STATION EXCAVATION AREA AND CONFIRMATION SAMPLE MAP

Removal Action Workplan Slag Removal in Operable Unit S-6 Union Pacific Curtis Park Railyard Sacramento, CA

Appendex A

U.

APPENDIX A LABORATORY ANALYTICAL REPORTS

DATA VALIDATION MEMO

8801 Folsom Boulevard, #200 Sacramento, CA 95826 Telephone - (916) 387-8800 Fax - (916) 387-0802

TO:

Jim Brake

INFO:

FROM:

Sacramento OA/OC Group

FILE: 00173-195-044

DATE:

January 7, 2000

SITE: UPRR Sacramento - Right-of-Way

SUBJECT:

Summary of Data Validation Entech Reports 18320 and 18409 and Zymax

Reports 18687 and 18743

This report summarizes the findings of the limited validation of thirty soil samples that were collected on December 22, 1999 and January 3, 2000 for the Union Pacific Railroad – Right-of-Way project in Sacramento, California. These samples were identified as STNCC-01-1.0, STNCC-01-3.0, STNCC-01-9.0, STNCC-02-1.0, STNCC-02-3.0, STNCC-02-7.0, STNCC-03-1.0, STNCC-03-3.0, STNCC-03-9.0, STN21-01-1.0, STN21-01-3.0, STN-01-9.0, STN21-02-1.0, STN21-02-5.0, STN21-02-9.0, STNCC-04-1.0, STNCC-04-3.0, SNTCC-04-4.0, STNCC-04-9.0, STNCC-05-2.0, STNCC-05-9.0, STNCC-06-3.0, STNCC-06-4.0, STNCC-06-9.0, STN21-03-1.0, STN21-03-3.0, STN21-03-9.0, and STN21-03-10.0. These samples were analyzed for Total Extractable Petroleum Hydrocarbons (EPA 8015M), Polynuclear Aromatic Hydrocarbons (EPA 8270-SIM), and Total Lead and Arsenic (EPA 6010). The data were reviewed in accordance with the Dames & Moore standard operating procedures presented in the approved QAPjP (Dames & Moore, 1996) and USEPA National Functional Guidelines for Laboratory Data Review, Organics and Inorganics (EPA, 1994).

1.0 Executive Summary

No data were rejected. All other sample holding times were met. Two arsenic detections were qualified as estimated due to matrix interferences. No significant differences were noted between field duplicate pair STNCC-06-3.0/STNCC-06-4.0. Significant differences were noted for lead results for field duplicate pairs, STNCC-04-3.0/STNCC-04-4.0 and STN21-03-9.0/STN21-03-10.0. These detections of lead have been qualified as estimated. Overall, these data are acceptable, as qualified, and are useable for their intended purpose.

2.0 Total Extractable Petroleum Hydrocarbons (EPA 8015M)

Thirty soil samples were submitted for Total Extractable Petroleum Hydrocarbons (EPA 8015M) analysis. The data were evaluated based on the following parameters. A leading check mark (\checkmark) indicates an area of review in which all data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review, impacting data quality and usability.

- ✓ Data Completeness
- ✓ Holding Times and Preservation
- ✓ Blanks
- ✓ Laboratory Control Samples
- ✓ Matrix Spike/Matrix Spike Duplicate (MS/MSD)
- ✓ System Monitoring Compounds (Surrogates)

- ✓ Field Duplicates
- ✓ Compound Identification and Quantitation
- 2.1 <u>Matrix Spike/Matrix Spike Duplicate (MS/MSD)</u>

A sample from outside this project was utilized for MS/MSD analysis. Consequently, no assessment of matrix interferences can be made.

2.2 Compound Identification and Quantitation

Samples STNCC-03-1.0 (2x), STN21-01-3.0 (10x), and STN21-03-1.0 (2x) were diluted due to the presence of motor oil.

3.0 Total Arsenic and Lead (EPA 6010)

Thirty soil samples were submitted for total arsenic and lead (EPA 6010) analysis. The data were evaluated based on the following parameters. A leading check mark (✓) indicates an area of review in which all data were acceptable. A preceding crossed circle (⊗) signifies areas where issues were raised during the course of the validation review, impacting data quality and usability.

- ✓ Data Completeness
- ✓ Holding Times and Preservation
- ✓ Blanks
- ✓ Laboratory Control Samples
- ✓ Matrix Spike/Matrix Spike Duplicate (MS/MSD)
- ✓ Compound Identification and Quantitation
- 3.1 Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Sample STN21-02-1.0 was utilized for MS/MSD analysis and the arsenic recoveries exceeded the upper control limit indicating a high bias. Arsenic detections for samples STN21-02-1.0 and STN21-02-5.0 were qualified as estimated (J).

3.2 Field Duplicates

Samples STNCC-04-3.0/STNCC-04-4.0, STNCC-06-3.0/STNCC-06-4.0, and STN21-03-9.0/STN21-03-10.0 represent field duplicate pairs. Duplicate imprecision was noted for lead results in pairs STNCC-04-3.0/STNCC-04-4.0 and STN21-03-9.0/STN21-03-10.0. These detections of lead have been qualified as estimated (J).

3.3 Compound Identification and Quantitation

All samples were diluted five-fold appropriate to the method.

4.0 Polynuclear Aromatic Hydrocarbons (EPA 8270-SIM)

Thirty soil samples were submitted for Polynuclear Aromatic Hydrocarbon (EPA 8270-SIM) analysis. The data were evaluated based on the following parameters. A leading check mark (\checkmark) indicates an area of review in which all data were acceptable. A preceding crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review, impacting data quality and usability.

- ✓ Data Completeness
- ✓ Holding Times and Preservation

- ✓ Blanks
- ✓ Laboratory Control Samples
- ✓ Matrix Spike/Matrix Spike Duplicate (MS/MSD)
- ✓ System Monitoring Compounds (Surrogates)
- ✓ Field Duplicates
- ✓ Compound Identification and Quantitation
- 4.1 <u>Matrix Spike/Matrix Spike Duplicate</u> (MS/MSD)
 Sample STNCC-04-1.0 was utilized for MS/MSD analysis and all recoveries met acceptance criteria.

Intech Analytical Labs, Inc.

CA ELAP# I-2346

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

January 07, 2000

Jim Brake

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

DECEIVED 1 JAN 12 2000

BY:----

Order: 18409

Project Name: UP-SAC

Project Number:

Project Notes: Report amended 1/7/00

Date Collected: 1/3/00
Date Received: 1/4/00

P.O. Number: 00173-195-044

On January 04, 2000, 15 samples were received under documentented chain of custody. Results for the following analyses are attached:

<u>Matrix</u> Solid <u>Test</u>

TPH, Extractable

Method

EPA 8015 MOD. (Extractable)

Chemical analysis of these samples has been completed. Summaries of the data are contained on the following pages. USEPA protocols for sample storage and preservation were followed.

Entech Analytical Labs, Inc. is certified by the State of California (#2346). If you have any questions regarding procedures or results, please call me at 408-735-1550.

Sincerely,

-Michelle L. Anderson

Lab Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00 Date Received: 1/4/00

Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID: 18	8409		Lab Sa	mple II): 1840 <u>9</u>	9-001		Client Sam	ple ID: S	ΓNCC-04-1.0	•
Sample Time: 9:	15 AM		Sam	ple Dat	e: 1/3/0	0		Ŋ	Matrix: So	olid	
Parameter	<u> </u>	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
IPH as Bunker Oil		ND		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
								Surrogate Hexacosane		Recovery	Control Limits 65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
ΓPH as Diesel		ND		1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
	•						Surroga Hexacos		Surrogate:	-	Control Limits 65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
I'PH as Fuel Oil		ND		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga	ite	Surrogate	Recovery	Control Limits
							Hexacos	ane	101		65 - 135
.'arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PPH as Hydraulic Oil		ND		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga Hexacos		Surrogate 101		Control Limits 65 - 135
.'arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Jet Fuel (JP-5)		ND		1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
		·•					Surroga Hexacos		Surrogate 101	-	Control Limits 65 - 135
)F = Dilution Factor	 	ND	= Not Dete	cted		DLR =	Detection	Limit Reported	d	PQL = Practica	Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00 Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID:	18409		Lab Sa	mple ID:	18409	-001		Client Sam	ple ID: S7	NCC-04-1.0	
Sample Time:	9:15 AM	_	Sam	ple Date:	1/3/00	<u></u> j		I	Matrix: So	lid	
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Kerosene		ND		1	1	1:	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
							Surroga	te	Surrogate l	Recovery	Control Limits
				1,		; ;	Hexacosa	ine	101		65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Motor Oil		ND		į: 1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
					ı		Surroga	te	Surrogate l	Recovery	Control Limits
							Hexacosa	ine	101		65 - 135
Parameter		Result	Flag	DF	PQL	DĻR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Stoddard Solv	ent	ND		1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
				ic			Surroga	te	Surrogate l	Recovery	Control Limits
				17		:	Hexacosa	ine	101		· 65 - 135

Comment:

Report amended 1/7/00

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00 Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID:	18409		Lab Sa	mple II	D: 1840	9-002		Client Sam	ple ID: S'	ΓNCC-04-3.0	· · · · · · · · · · · · · · · · · · ·
Sample Time:	9:20 AM		Sam	ple Dat	te: 1/3/0	0 ·]	Matrix: So	olid	
'arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Bunker Oil		ND		l	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
•							Surrogs	ite	Surrogate	Recovery	Control Limits
							Hexacos	ane	72		65 - 135
'arameter	_,,,	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Diesel		ND		i	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
	•						Surroga	ıte	Surrogate	Recovery	Control Limits
							Hexacos	ane	72		65 - 135
arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Fuel Oil		ND		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga	ate	Surrogate	Recovery	Control Limits
	•						Hexacos	апе	72		65 - 135
arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Hydraulic Oil		ND		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga	ate	Surrogate	Recovery	Control Limits
							Hexacos	ane	72		65 - 135
arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Jet Fuel (JP-5)		ND		1	1	I	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga	ite	Surrogate	Recovery	Control Limits
							Hexacos	ane	72		65 - 135
F = Dilution Factor	<u> </u>	ND	= Not Dete	cted		DLR:	= Detection	Limit Reporte	d	PQL = Practical	Quantitation Limit

PQL = Practical Quantitation Limit

\nalysis performed by Entech Analytical Labs, Inc. (CA ELAP #1-2346)

lichelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00

Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID:	18409		Lab Sa	mple ID:	1840	9-002		Client Sam	ple ID: S	TNCC-04-3.0	
Sample Time:	9:20 AM		Sam	ple Date:	1/3/0	0	·- · · · · · ·	1	Matrix: So	olid	·
Parameter	-	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Kerosene	•	ND		1	'I	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
				ė			Surroga	ite	Surrogate !	Recovery	Control Limits
				1#			Hexacosa	nne	72		65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Motor Oil		ND		. 1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
				1			Surroga	te	Surrogate 1	Recovery	Control Limits
•							Hexacosa	ane	72		65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Stoddard Solve	nt	ND		1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
				1			Surroga	te	Surrogate l	Recovery	Control Limits
-				n . I		*	Hexacosa	ine	72		65 - 135

Comment:

Report amended 1/7/00

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #1-2346)

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00

Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID:	18409		Lab Sa	mple II): 1840	9-003		Client Sam	ple ID: ST	TNCC-04-4.0	
Sample Time: 9	9:25 AM		Sam	ple Date	e: 1/3/0	0		1	Matrix: So	olid	
'arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Bunker Oil		ND		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga	ite	Surrogate 1	Recovery	Control Limits
							Hexacos	ane	90		65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Diesel		5.8	x	1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
•							Surroga	ite	Surrogate 1	Recovery	Control Limits
							Hexacos	ane	90		65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Fuel Oil		ND		i	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga	ite	Surrogate !	Recovery	Control Limits
							Hexacos	ane	90		65 - 135
·'arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Hydraulic Oil		ND		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga	ite	Surrogate	Recovery	Control Limits
							Hexacos	ane	90		65 - 135
l'arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Jet Fuel (JP-5)		ND	•	1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga	ite	Surrogate	Recovery	Control Limits
							Hexacos	ane	90		65 - 135
OF = Dilution Factor		ND	= Not Dete	cted		DLR :	= Detection	Limit Reporte	d	POL = Practical	Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake.

Date: 1/7/00

Date Received: 1/4/00 Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID:	18409		Lab Sar	nple ID	: 1840	9-003	:	Client Sam	ple ID: S7	TNCC-04-4.0	
Sample Time:	9:25 AM		Samp	ole Date	: 1/3/0	0		1	Matrix: So	olid	
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Kerosene		ND		11	, 1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
	· · · · · · · · · · · · · · · · · · ·						Surroga Hexacosa		Surrogate 1	Reçovery	Control Limits 65 - 135
Parameter	· • • • • • • • • • • • • • • • • • • •	Result	Fiag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Motor Oil		ND		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
Ĭ	• •			* *** **** ***** *****	, ū		Surroga Hexacosa		Surrogate i	Recovery	Control Limits 65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Stoddard Solv	rent	ND	•	51	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
"	•			1		•	Surroga	te	Surrogate	Recovery	Control Limits
.· •			,	, k			Hexacosa	ane	90		65 - 135
Comment:	Report ame	nded 1/7/00		1			,				

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00 Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

			- CI 111	100 2 111	ary trea	ir recpo				
Order ID: 18409		Lab Sa	mple II	Client Sample ID: STNCC-04-9.0						
Sample Time: 9:45 AM	[Sam	ple Date	e: 1/3/0	0	•		Matrix: So	olid	
l'arameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Bunker Oil	ND ·		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
						Surroga	ite	Surrogate !	Recovery	Control Limits
						Hexacos	ane	79		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Diesel	ND		. 1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
			•			Surroga	ite	Surrogate	Recovery	Control Limits
						Hexacos	ane	79		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Fuel Oil	ND		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
						Surroga	ițe	Surrogate	Recovery	Control Limits
•						Hexacos	ane	79		65 - 135
Parameter	Result	Flag	DF	PQL	DLR.	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Hydraulic Oil	ND		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
						Surroga	ite	Surrogate	Recovery	Control Limits
						Hexacos	ane	79		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Jet Fuel (JP-5)	ND		1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
						Surroga	ate	Surrogate	Recovery	Control Limits
						Hexacos	ane	79		65 - 135
DF = Dilution Factor	· ND	= Not Det	ected		DLR	= Detection	Limit Reporte	d	PQL = Practica	Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00 Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID:	18409		Lab Sa	mple ID	1840	9-004		Client Sam	ple ID: S7	NCC-04-9.0	
Sample Time:	9:45 AM		Sam	ple Date	1/3/0	0			Matrix: Sc	lid	
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Kerosene		ND		1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
				()			Surroga	te	Surrogate l	Recovery	Control Limits
			•	1 th		•	Hexacosa	ine	79		65 - 135
Paramëter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Motor Oil		ND		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
	a.			*.			Surroga	te	Surrogate l	Recovery	Control Limits
<u> </u>	•			7) 2) 2)		,	Hexacosa	ne	79		65 - 135
Parameter		Result	Flag	ДF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Stoddard Solv	⁄ent	ND		* _! 1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga	te	Surrogate l	Recovery	Control Limits
			:	*1			Hexacosa	ine	79		65 - 135

Comment:

Report amended 1/7/00

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

POL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00

Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID:	18409		Lab Sa	mple II	D: 1840	9-005		Client Sam	iple ID: S	TNCC-05-2.0	
Sample Time:	9:58 AM		Sam	ple Dat	t e: 1/3/0	0		· _ I	Matrix: So	olid '	
³arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Bunker Oil	."	ND		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga Hexacosa		Surrogate 89	Recovery	Control Limits 65 - 135
'arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	-Analysis Date	QC Batch ID	Method
PH as Diesel		ND .	•	1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
			•			•	Surroga Hexacos		Surrogate 1 89	Recovery	Control Limits 65 - 135
'arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
"PH as Fuel Oil		ND		. 1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga Hexacos		Surrogate 89	Recovery	Control Limits 65 - 135
'arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method .
PH as Hydraulic Oil		ИD		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
	ur ·	;			•		Surroga Hexacosa		Surrogate 89	Recovery	Control Limits 65 - 135
'aranieter	<u> </u>	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
"PH as Jet Fuel (JP-5)		ND		1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga Hexacosa		Surrogate 89	Recovery 	Control Limits 65 - 135
)F = Dilution Factor		ND	= Not Dete	cted		DLR :	= Detection	Limit Reporte	d .		Quantitation Limit

r – Dilution ractor

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Aichelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00

Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

	<u></u>		-1			a zap				
Order ID:	18409	Lab S	Sample I	D: 1840	9-005		Client Sam	ple ID: S'	TNCC-05-2.0	
Sample Time:	9:58 AM	Sa	mple Da	te: 1/3/0	00			Matrix: S	olid	
'arameter	Resu	lt Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
ΓPH as Keroséne	ND		. 1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
						Surroga	ıte	Surrogate	Recovery	Control Limits
						Hexacos	anc	89		65 - 135
'arameter	Resu	lt Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Motor Oil	ND		1	. 13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
						Surroga	ıte [.]	Surrogate	Recovery	Control Limits
	•			•		Hexacos	ane	89		65 - 135
'arameter	Resu	lt Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
FPH as Stoddard Solve	enț ND		. 1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
						Surroga	ite	Surrogate	Recovery	Control Limits
			•		•	Hexacos	ane	89		65 - 135

Comment:

Report amended 1/7/00

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00

Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID:	18409		Lab Sa	mple II	D: 1840	9-006	Client Sample ID: STNCC-05-4.0						
Sample Time:	Sample Time: 10:02 AM Sample Date: 1/3/00 Matrix: Solid								olid				
'arameter		Result	Flag	DF	PQL	DĿR	Units	Extraction Date	Analysis Date	QC Batch ID	Method		
PH as Bunker Oil		ND		1	13	13	mg/Kg	1/4/00	1/5/00	D\$000102	EPA 8015 MOD. (Extractable)		
	•						Surroga Hexacosa		Surrogate 3	Recovery	Control Limits 65 - 135		
'arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method		
"PH as Diesel		ND		1	l	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)		
							Surrega Hexacosa		Surrogate 96	Recovery	Control Limits 65 - 135		
'arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch 1D	Method		
"PH as Fuel Oil		ND		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)		
		•				•	Surroga Hexacos		Surrogate 96	Recovery	Control Limits 65 - 135		
'arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method		
TPH as Hydraulic Oil		ND		I	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)		
			•				Surroga Hexacos		Surrogate 96	Recovery	Control Limits 65 - 135		
l'arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method		
TPH as Jet Fuel (JP-5)	÷	ND		1	1	. 1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)		
•							Surroga	ıte	Surrogate	Recovery	Control Limits		
							Hexacos	ane	96		65 - 135		
)F = Dilution Factor		ND	= Not Dete	cted		DĹR :	= Detection	Limit Reporte	d	PQL = Practica	Quantitation Limit		

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00

Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

					cu, Ali	aryuca	теро	1 t.			
Order II	D: 18409		Lab Sar	nple ID:	1840	9-006		Client Sam	ple ID: S7	NCC-05-4.0	
Sample Time	e: 10:02 AM	1	Samp	Sample Date:		1/3/00			olid	·	
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Kerosene		ND		1	1	İ	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
	•			}. 		•	Surroga Hexacosa		Surrogate I 96	Recovery	Control Limits 65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Motor Oil		ND		1 .	, 13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
	•					*	Surrogs	ıte	Surrogate l	Recovery	Control Limits
			-			٠.	Hexacos	ane	96	•	65 - 135
Parameter		Result	Flag	DF	PQL.	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Stoddard Se	olvent	ND		1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
1	•	,				·	Surroga	ate	Surrogate 1	Recovery	Control Limits
						*	Hexacos	ane	96		65 - 135
Comment:	Report ame	nded 1/7/0	0				٠				
				- I		*					

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00 Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID: 1	8409	Lab Sa	mple II	D: 1840	9-007		Client Sam	ple ID: S7	TNCC-05-9.0	
Sample Time: 1	0:20 AM	Sam	ple Dat	e: 1/3/0	0			olid		
³ arameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
ГРН as-Bunker Oil	ND		. 1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
•	•					Surroga	ate	Surrogate 1	Recovery	Control Limits
						Hexacos	ane	86		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
「PH as Diesel	ND		1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
						Surroga	ate	Surrogate 1	Recovery	Control Limits
						Hexacos	ane	86		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
「PH as Fuel Oil	ND	•	Í	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
					•	Surroga	ate	Surrogate !	Recovery	Control Limits
						Hexacos	ane	86		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Únits	Extraction Date	Analysis Date	QC Batch ID	Method
ΓPH as Hydraulic Oil	ND		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
						Surroga	ate	Surrogate !	Recovery	Control Limits
						Hexacos	ane	86		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
ΓΡΗ as Jet Fuel (JP-5)	ND		. 1	1	. 1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
•						Surrog	ate	Surrogate	Recovery	Control Limits
	. :					Hexacos	ane	. 86		65 - 135
DF = Dilution Factor	. N	D = Not Det	ected		DLR -	= Detection	Limit Reporte	.d .	POL = Practica	l Quantitation Limit

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00

Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID: 1	8409	Lab Sa	mple II): 1840	9-007		Client Sam	ple ID: S7	ΓNCC-05-9.0	
Sample Time: 10	0:20 AM	Sam	ple Dat	e: 1/3/0	0					
>arameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Kerosene	ND		1	I,	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
			ï	ė		Surroga	ite	Surrogate l	Ŕecovery	Control Limits
			1			Hexacosa	ine	86		65 - 135
'a rameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Motor Oil	ND		1	.13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
			į			Surroga	ite	Surrogate I	Recovery	Control Limits
			i.	e d		Hexacosa		86	·	65 - 135
'arameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Stoddard Solvent	i ND		1	. 1	1 .	mg/Kg	1/4/00	1/5/00	D\$000102	EPA 8015 MOD. (Extractable)
			a 	,		Surroga	ite	Surrogate l	Recovery	Control Limits
		1	3		Hexacosa	ne	86		65 - 135	

Comment:

Report amended 1/7/00

F = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

1ichelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00 Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID: 18409		Lab Sa	mple I	D: 1840	9-008		Client Sam	ple ID: S	TNCC-06-1.0	•
Sample Time: 10:37	AM	Sam	ple Dat	te: 1/3/0	0			Matrix: S	olid	
'arameter	Résult	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Bunker Oil	ND		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
						Surroga	ite	Surrogate	-	Control Limits
	-				•	Hexacos	ane	99		65 - 135
'arameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Diesel	ND		1	1	1	mg/Kg	1/4/00	1/5/00	D\$000102	EPA 8015 MOD. (Extractable)
						Surroga	ite	Surrogate	Recovery	Control Limits
						Hexacos	ane	99		65 - 135
'arameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Fuel Oil	ND		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
						Surroga	ite	Surrogate	Recovery	Control Limits
						Hexacos	ane	99		65 - 135
'arameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Hydraulic Oil	ND		1	13 .	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
						Surroga	ite	Surrogate	Recovery	Control Limits
						Hexacos	ane	99		65 - 135
'arameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Jet Fuel (JP-5)	ND		1	1	I	mg/Kg	1/4/00	1/5/00	DS000102	. EPA 8015 MOD. (Extractable)
						Surroga	ite	Surrogate	Recovery	Control Limits
						Hexacos	ane	99		65 - 135
)F = Dilution Factor	ND	= Not Dete	cted		DLR =	= Detection	Limit Reporte	d	PQL = Practical	Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Aichelle L. Anderson, Laboratory Director

ntech Analytical Labs, Inc.

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00

Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID:	18409		Lab Sa	mple ID	: 1840	9-008		Client Sam	ple ID: Si	ΓNCC-06-1.0	
Sample Time:	10:37 AM		Sam	ple Date	: 1/3/0	0]	Matrix: So	olid	
arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Kerosene		ND		.1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
				i			Surroga	te	Surrogate l	Recovery	Control Limits
	•				4	•	Hexacosa	inê	99		65 - 135
arameter]	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Motor Oil		ND		11	.13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOI (Extractable)
				Ü			Surroga	te	Surrogate 1	Recovery	Control Limits
							Hexacosa	ine	99		65 - 135
arameter]	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Stoddard Solv	ent	ND		1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOÉ (Extractable)
				Ĺ			Surroga	tė	Surrogate l	Recovery	Control Limits
				i			Hexacosa	ine	99	-	65 - 135

)F = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Aichelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00

Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID:	18409		Lab Sa	mple II): 1840	9-009		Client Sam	ple ID: ST	NCC-06-3.0	
Sample Time:	10:42 AM	[Sam	ple Dat	e: 1/3/0	0			Matrix: So	lid	
'arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Bunker Oil		ND		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga Hexacosa		Surrogate I 80	Recovery	Control Limits 65 - 135
'arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
'PH as Diesel	•	ND		1.	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
				-			Surroga	ite	Surrogate l	Recovery	Control Limits
	ı						Hexacosa	ane	80		65 - 135
⁹ arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
"PH as Fuel Oil		ND .		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga	ațe	Surrogate l	Récovery	Control Limits
	·	,	•				Hexacos	ane	80		65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Hydraulic Oil		ND		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
•							Surroga	ate	Surrogate !	Recovery	Control Limits
							Hexacos		80		65 - 135
Parameter :		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Jet Fuel (JP-5)	ND		1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
	•		<i>:</i>				Surrog	ate	Surrogate	Recovery	Control Limits
							Hexacos		80		65 - 135
OF = Dilution Factor		NE	= Not Dete	ected		DLR	= Detection	n Limit Reporte	ed .	PQL = Practica	l Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00

Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID: 184	09	Lab Sa	mple ID:	1840	9-009		Client Sam	ple ID: S	INCC-06-3.0	
Sample Time: 10:4	2 AM	Sam	ple Date:	1/3/0	0		·			
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Kerosene	· ND		1	1 .	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
			i	÷		Surroga	ite	Surrogate	Recovery	Control Limits
	•		. 14			Hexacos	ine '	80	•	65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Motor Oil	ND		. 1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
			."			Surroga	ite .	Surrogate	Recovery	Control Limits
·			: •	r		Hexacos	ane	80		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction. Date	Analysis Date	QC Batch ID	Method
TPH as Stoddard Solvent	ND		1	l	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
•			•			Surroga	ite	Surrogate	Recovery	Control Limits
			*			Hexacos	ane ·	80		65 - 135

Comment:

Report amended 1/7/00

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00 Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID: 1	8409	Lab Sa	ample I	0: 18409-010 Client Sample ID:					INCC-06-4.0	
Sample Time: 10	0:48 AM	Sam	iple Dat	te: 1/3/0	0		1	olid		
'arameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Bunker Oil	ND		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
	•	•				Surroga Hexacos		Surrogate 97	-	Control Limits 65 - 135
'anameter	Result	t Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Diesel	ND	•	1	I	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
			•			Surroga	ite	Surrogate		Control Limits
						Hexacos	ane	97		65 - 135
'arameter	Result	t Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Fuel Oil	ŃD		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
		•				Surrog	ate	Surrogate	Recovery	Control Limits
	•					Hexacos	ane	97		65 - 135
'arameter	Resul	t Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Hydraulic Oil	ND		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
• ,						Surrog	ate.	Surrogate	Recovery	Control Limits
•						Hexacos	ane	97		65 - 135
'arameter	Resul	t Flag	DF	PQL	DLR	Units	Extraction	Analysis	QC Batch ID	Method
				- 42		0	Date	Date	Q0	
PH as Jet Fuel (JP-5)	ND		1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
						Surrog	ate	Surrogate	Recovery	Control Limits
		,				Hexacos	ane	97		65 - 135
F = Dilution Factor		ID = Not Det	ected		DLR	= Detection	Limit Reporte	d	POL = Practica	l Ouantitation Limit

F = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Aichelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00

Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

				li li		•,					
Order ID:	18409		Lab San	ple II): 1840	9-010	· · · · · · · · · · · · · · · · · · ·	Client Sam	ple ID: Si	TNCC-06-4.0	· · · · · · · · · · · · · · · · · · ·
Sample Time:	10:48 AM	1	Samp	le Dat	e: 1/3/0	0		1			
Parameter	-	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Kerosene		ND		1	1 .	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
				II.			Surroga	ite	Surrogate l	Recovery	Control Limits
							Hexacos	ine	97		65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Motor Oil		ND	1.	1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
				ì	•		Surroga	ite	Surrogate l	Recovery	Control Limits
							Hexacos	ine	97		65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Stoddard Solve	ent	ND		1	. 1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga	ite	Surrogate l	Recovery	Control Limits
,							Hexacos	ane	97		65 - 135

Comment:

Report amended 1/7/00

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00

Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID: 18409		Lab Sa	mple II	D: 1840	9-011		Client Sam	ple ID: S	TNCC-06-9.0	
Sample Time: 11:02 A	М	Sam	ple Dat	te: 1/3/0	0]	Matrix: So	olid	
farameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Bunker Oil	ND		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
						Surroga	ate	Surrogate	Recovery	Control Limits
•						Hexacos	ane	92		65 - 135
² arameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
"PH as Diesel	ND		1	1	1	mg/Kg	1/4/00	1/5/00.	DS000102	EPA 8015 MOD. (Extractable)
						Surrogs	ate	Surrogate	Recovery	Control Limits
						Hexacos	ane	92		65 - 135
⁹ aranieter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Fuel Oil	ND	•	1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
					. •	Surroga	ate	Surrogate	Recovery	Control Limits
						Hexacos	ane	92		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
IPH as Hydraulic Oil	ND		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
						Surroga	ate	Surrogate Recovery		Control Limits
						Hexacos	ane	92		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction	Analysis	QC Batch ID	Method
ΓΡΗ as Jet Fuel (JP-5)	ND		1	1	1	mg/Kg	Date 1/4/00	Date 1/5/00	DS000102	EPA 8015 MOD. (Extractable)
						Surroga	ate	Surrogate	Recovery	Control Limits
						Hexacos		92		65 - 135
NF = Dilution Factor	ND	= Not Date	ected	·	חום	- Detection	1 imit Panorta		POI - Practice	Overtitation Limit

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00

Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID:	18409.	Lab Sa	mple II	D: 1840	9-011	٠	Client Sam	ple ID: Si	TNCC-06-9.0	
Sample Time:	11:02 AM	Sam	ple Dat	e: 1/3/0	0		I	Matrix: Sc	olid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
IPH as Kerosene	ND		1	I	1 .	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
	•	•				Surroga Hexacosa		Surrogate I	Recovery	Control Limits 65 - 135
						Hexacosa		92		05-135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch 1D	Method
ГРН as Motor Oil	ИD		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
			# 			Surroga	ıte	Surrogate l	Recovery	Control Limits
			1 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Hexacos	ane	92		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Stoddard Solv	ent ND		; 1	. 1	ŀ	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
			ij.			Surroga	ıte	Surrogate l	Recovery	Control Limits
,			\$" 1			Hexacos	ane	92		65 - 135

Comment:

Report amended 1/7/00

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00

Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044 Sampled By: Trevor Joseph

Certified Analytical Report

Order ID:	18409		Lab Sa	mple Il	D: 1840	9-012		Client Sam	ple ID: S	ΓN21-03-1.0	
Sample Time:	11:33 A	M	Sam	ple Dat	e: 1/3/0	0			Matrix: So	olid	
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Bunker Oil		ND		. 2	13	26	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga Hexacosa	•	Surrogate 1	Recovery	Control Limits 65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Diesel		ND		2	1	2	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga	ıtė	Surrogate l	Recovery	Control Limits
							Hexacosa	ane	76		65 - 135
Parameter	····	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Fuel Oil	,	ŃD		2	13	26	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
	·						Surroga	ite	Surrogate l	Recovery	Control Limits
			·				Hexacosa	ine	76		65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
l'PH as Hydraulic Oil		ND		2	13	26	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga	ite	Surrogate !	Recovery	Control Limits
							Hexacos	ane	76		65 - 135
i ² arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PlH as Jet Fuel (JP-5)	٠	ND		2	1	2	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga	ıtė	Surrogate	Recovery	Control Limits
		. •					Hexacos	ane	76		65 - 135
OF = Dilution Factor		ND	= Not Dete	cted	· · · · · · · · · · · · · · · · · · ·	DLR =	= Detection	Limit Reported	d	PQL = Practical	Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00

Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID: 18409		Lab Sa	mple I	D: 1840	9-012		Client Sam	ple ID: S7	ΓN21-03-1.0	
Sample Time: 11:33 A	M	Sam	ple Da	te: 1/3/0	0 -			Matrix: Sc	olid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Kerosene	ND		2	1	2.	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
						Surroge	ite	Surrogate l	Recovery	Control Limits
<i>!</i>			4.		9	Hexacos	ane	76	•	65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Motor Oil	74		2	13	26	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
				•	*	Surroga	ite	Surrogate I	Recovery	Control Limits
<i>f</i>			r		: .	Hexacos	ane	76		65 - 135
h					<u>)</u>					
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction . Date	Analysis Date	QC Batch ID	Method
TPH as Stoddard Solvent	ND		2	1	. 2	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
						Surroga	ite	Surrogate I	Recovery	Control Limits
					•	Hexacos	ane	76		65 - 135

Comment:

Report amended 1/7/00

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00

Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID:	18409		Lab Sa	ample Il	D: 1840	9-013		Client Sam	ple ID: S	TN21-03-3.0	
Sample Time:	11:36 AM	1	Sam	ple Dat	e: 1/3/0	10]	Matrix: S	olid	
'arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
"PH as Bunker Oil		ND		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
	•					•	Surroga Hexacosa		Surrogate 87		Control Limits 65 - 135
'arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
"PH as Diesel	٠,	ND		1	Ì	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga Hexacosa		Surrogate 87	· ·	Control Limits 65 - 135
³ arameter	•	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
"PH as Fuel Oil		ND		: I	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga Hexacosa		Surrogate 87		Control Limits 65 - 135
'arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
"PH as Hydraulic Oil		ND		. 1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga Hexacosa		Surrogate 87	=	Control Limits 65 - 135
'arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
"PH as Jet Fuel (JP-5)) .	ND	÷.	1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
			•				Surroga Hexacosa		Surrogate 87	•	Control Limits 65 - 135
)F = Dilution Factor		ND	= Not Det	ected		DLR :	= Detection	Limit Reporte	d	PQL = Practical	Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Aichelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00

Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

			Л							
Order ID: 1	8409	Lab Sa	mple II	D: 1840	9-013		Client Sam	ple ID: S'	TN21-03-3.0	
Sample Time: 1	1:36 AM	Sam	ple Dat	e: 1/3/0	0]	Matrix: S	olid	·
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Kerosene	ИD	,	1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
			11 11	1		Surroga	ıte:	. Surrogate	Recovery	Control Limits
						Hexacos	ane	87	-	65 - 135
Parameter	Result	Flag	DF	PQL	DĹŔ	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Motor Oil	ND	•	1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
			i Ii			Surroga	ıte	Surrogate	Recovery	Control Limits
			<u> </u>			Hexacos	ane	87		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Stoddard Solvent	: ND		·I	. 1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
	-		l h		· ·	Surroga	ıte.	Surrogate	Recovery	Control Limits
	•		•			Hexacos	ane	87	-	65 - 135

Comment:

Report amended 1/7/00

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00

Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID:	18409		Lab Sa	ample Il	D: 1840	9-014		Client Sam	ple ID: S'	ΓN21 - 03-9.0	
Sample Time:	11:50 AM	_	Sam	ple Dat	e: 1/3/0	10]	Matrix: S	olid	
Parameter	I	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Bunker Oil		ND.		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga Hexacos		Surrogate 100	-	Control Limits 65 - 135
'arameter	I	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Diesel		ND		1,		1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga Hexacosa		Surrogate 100		Control Limits 65 - 135
'arameter	J	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Fuel Oil		ND	•	1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga Hexacosa		Surrogate 100	-	Control Limits 65 - 135
'arameter	ŀ	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Hydraulic Oil	•	ND		I.	13	13	mg/Kg	1/4/00	1/5/00 DS000102		EPA 8015 MOD. (Extractable)
							Surroga Hexacosa		Surrogate 1	7	Control Limits 65 - 135
'arameter	F	Result	Flag	ĎF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
'PH' as Jet Fuel (JP-5)		ND		. 1	1 .	. 1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
			٠.				Surroga Hexacosa		Surrogate 1	Recovery	Control Limits 65 - 135
)F = Dilution Factor		ND	= Not Dete	cted		DLR =	- Detection	Limit Reported	 	PQL = Practical	Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

1ichelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00

Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

			. 1							
Order ID: 184	09	Lab Sa	ımple Il	D: 1840	9-014		Client Sam	ple ID: S	ΓN21 - 03-9.0	
Sample Time: 11:5	0 AM	Sam	ple Dat	te: 1/3/0	0	•		Matrix: So	olid	·
² arameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Kerosene	ND :		• 1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOE (Extractable)
						Surroga	ite	Surrogate l	Recovery	Control Limits
·	•					Hexacosa	ine	100		65 - 135
'arameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Motor:Oil	15		į 1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOI (Extractable)
•						Surroga Hexacos		Surrogate 1	•	Control Limits 65 - 135
'arameter	Result	Flag	DF	PQL	DĻR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Stoddard Solvent	ND		i 1 .	1	Í	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD (Extractable)
			t			Surroga	te	Surrogate l	Recovery	Control Limits
	•				* .	Hexacosa	nne	100		65 - 135

Comment:

Report amended 1/7/00

)F = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Aichelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00 Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID:	18409		Lab Şa	mple Il	D: 1840	9-015		Client Sam	ple ID: S7	ΓN21-03-10.0	
Sample Time:	11:58 Al	М -	Sam	ple Dat	te: 1/3/0	0		. 1	Matrix: So	olid	
`arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
'PH as Bunker Oil		ND		1	13	13	ing/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga	ite	Surrogate l	Recovery	Control Limits
						٠	Hexacos	ane	87	•	65 - 135
arameter ·		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Diesel		ND		1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga	ıte.	Surrogate l	Recovery	Control Limits
							Hexacos	ane	87		65 - 135
'arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Fuel Oil		ND		.]	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
				•			Surroga	ite	Surrogate l	Recovery	Control Limits
							Hexacos	ane	87		65 - 135
arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Hydraulic Oil		ND.	•	1	13	13	mg/Kg	.1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
•		•	٠				Surroga	ite	Surrogate l	Recovery	Control Limits
	•		•				Hexacos	ane	87		65 - 135
'arameter	<u></u>	Result	Flag	DF.	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Jet Fuel (JP-5)		ND		1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
							Surroga	ite	Surrogate l	Recovery	Control Limits
							Hexacos	ane	87		65 - 135
F = Dilution Factor	<u> </u>	ND	= Not Dete	cted		DLR =	= Detection	Limit Reporte	d	PQL = Practical	Quantitation Limit

1ichelle L. Anderson, Laboratory Director

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/7/00

Date Received: 1/4/00 Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID: 18409		Lab Sa	mple II	D: 18409	9-015		Client Sam	ple ID: S7	ΓN21-03-10.0	
Sample Time: 11:58	AM ·	Sam	ple Dat	e: 1/3/0)		1	Matrix: So	olid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Kerosene	ND		1	. 1	, 1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
			1			Surroga	ite	Surrogate l	Recovery	Control Limits
			40 41 14			Hexacosa	ane	87		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Motor Oil	ND		1	13	13	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
						Surroga	ite	Surrogate 1	Recovery	Control Limits
•						Hexacos	ane	87	i	65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Stoddard Solvent	ND		1	1	1	mg/Kg	1/4/00	1/5/00	DS000102	EPA 8015 MOD. (Extractable)
			1			Surroga	ite	Surrogate	Recovery	Control Limits
			1			Hexacos	ane	87		65 - 135
Comment: Report	amended 1/7/0	0	# !!						1	

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

Dames & Moore 8801 Folsom Boulevard, Suite 200 Sacramento, CA 95826

Attn: Jim Brake

Date: 1/5/00 Date Received: 1/4/00 Project Name: UP-SAC

Project Number: P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Parameter Para	Order ID:	18409	Lab Sa	mple ID:	18409-	001	Client	Sample ID: ST	NCC-04-1.0	
Sample Time: 9:25 AM Sample Date: 1/3/00 Matrix: Solid	Sample Time:	9:15 AM	Sam	ple Date:	1/3/00			Matrix: So	lid	
Varietic 29 5	'arameter	Result	DF	PQL	DLR	Units	PrepDate	Analysis Date	OC Batch ID	Method
Order ID: 18409	\rsenic	29	5		5	mg/Kg	1/4/00	1/4/00	SM991225	EPA 60101
Sample Time: 9:20 AM	æad :	ND	5	1	5	mg/Kg	1/4/00	1/4/00	SM991225	EPA 60101
Parameter Result DF PQL DLR Units PrepDate Analysis Date QC Batch ID Method Indicate I	Order ID:	18409	Lab Sa	mple ID:	18409-	002	Client	Sample ID: ST	NCC-04-3.0	
Sample Time: 9:45 AM Sample ID: 18409-004 Client Sample ID: STNCC-04-9.0	Sample Time:	9:20 AM	Sam	ple Date:	1/3/00			Matrix: So	lid	
Order ID: 18409	'arameter	Result	DF	PQL	DLR	Units	PrepDate	Analysis Date	QC Batch ID	Method
Order ID: 18409	\rsenic	19	5	1	5	mg/Kg	1/4/00	1/4/00	SM991225	EPA 60101
Sample Time: 9:25 AM Sample Date: 1/3/00 Matrix: Solid	ead	5.6	. 5	1	5	mg/Kg	1/4/00	1/4/00	SM991225	EPA 60101
Parameter Result DF PQL DLR Units PrepDate Analysis Date QC Batch ID Method Inventor 25 5 1 5 mg/Kg 1/4/00 1/4/00 SM991225 EPA 6010 EP	Order ID:	18409	Lab Sa	mple ID:	18409-	003	Client	Sample ID: ST	NCC-04-4.0	
Order ID: 18409	Sample Time:	9:25 AM	Sam	ple Date:	1/3/00			Matrix: So	lid	
Drder ID: 18409	'arameter	Result	DF	PQL	DLR	Units	PrepDate	Analysis Date	QC Batch ID	Method
Order ID: 18409 Lab Sample ID: 18409-004 Client Sample ID: STNCC-04-9.0 Sample Time: 9:45 AM Sample Date: 1/3/00 Matrix: Solid arameter Result DF PQL DLR Units PrepDate Analysis Date QC Batch ID Method ursenic 6.4 5 1 5 mg/Kg 1/4/00 1/4/00 SM991225 EPA 6010 ead 6.8 5 1 5 mg/Kg 1/4/00 1/4/00 SM991225 EPA 6010 Order ID: 18409 Lab Sample ID: 18409-005 Client Sample ID: STNCC-05-2.0 Sample Time: 9:58 AM Sample Date: 1/3/00 Matrix: Solid Grameter Result DF PQL DLR Units PrepDate Analysis Date QC Batch ID Method Grameter Result DF PQL DLR Units PrepDate Analysis Date QC Batch ID Method	ursenic	25	5	1	5	mg/Kg	1/4/00	1/4/00	SM991225	EPA 60101
Sample Time: 9:45 AM Sample Date: 1/3/00 Matrix: Solid Grameter Result DF PQL DLR Units PrepDate Analysis Date QC Batch ID Method Grameter 6.4 5 1 5 mg/Kg 1/4/00 1/4/00 SM991225 EPA 6010 Lead 6.8 5 1 5 mg/Kg 1/4/00 1/4/00 SM991225 EPA 6010 Order ID: 18409 Lab Sample ID: 18409-005 Client Sample ID: STNCC-05-2.0 Sample Time: 9:58 AM Sample Date: 1/3/00 Matrix: Solid Parameter Result DF PQL DLR Units PrepDate Analysis Date QC Batch ID Method Arrameter Result DF PQL DLR Units PrepDate Analysis Date QC Batch ID Method Arrameter 21 5 1 5 mg/Kg 1/4/00 1/4/00 <td>ead</td> <td>17.</td> <td>5</td> <td>1</td> <td>5</td> <td>mg/Kg</td> <td>1/4/00</td> <td>1/4/00</td> <td>SM991225</td> <td>EPA 60101</td>	ead	17.	5	1	5	mg/Kg	1/4/00	1/4/00	SM991225	EPA 60101
Parameter Result DF PQL DLR Units PrepDate Analysis Date QC Batch ID Method Arsenic 6.4 5 1 5 mg/Kg 1/4/00 1/4/00 SM991225 EPA 6010 EP	Order ID:	18409	Lab Sa	mple ID:	18409-	004	Client	Sample ID: ST	NCC-04-9.0	
Order ID: 18409 Lab Sample ID: 18409-005 Client Sample ID: STNCC-05-2.0	Sample Time:	9:45 AM	Sam	ple Date:	1/3/00			Matrix: So	lid	
Order ID: 18409 Lab Sample ID: 18409-005 Client Sample ID: STNCC-05-2.0	'arameter	Result	DF	PQL	DLR	Units	PrepDate	Analysis Date	QC Batch ID	Method
Order ID: 18409 Lab Sample ID: 18409-005 Client Sample ID: STNCC-05-2.0 Sample Time: 9:58 AM Sample Date: 1/3/00 Matrix: Solid Grameter Result DF PQL DLR Units PrepDate Analysis Date QC Batch-ID Method Grameter 21 5 1 5 mg/Kg 1/4/00 1/4/00 SM991225 EPA 6010 Grade 9.5 5 1 5 mg/Kg 1/4/00 1/4/00 SM991225 EPA 6010	rsenic	6.4	5	1	5	mg/Kg	1/4/00	1/4/00	SM991225	EPA 60101
Sample Time: 9:58 AM Sample Date: 1/3/00 Matrix: Solid Farameter Result DF PQL DLR Units PrepDate Analysis Date QC Batch-ID Method arsenic 4 carameter 21 5 1 5 mg/Kg 1/4/00 1/4/00 SM991225 EPA 6010 4 carameter 9.5 5 1 5 mg/Kg 1/4/00 1/4/00 SM991225 EPA 6010	ead	6.8	5	1	.5	mg/Kg	1/4/00	1/4/00	SM991225	EPA 60101
Parameter Result DF PQL DLR Units PrepDate Analysis Date QC Batch-ID Method arsenic 21 5 1 5 mg/Kg 1/4/00 1/4/00 SM991225 EPA 6010 ead 9.5 5 1 5 mg/Kg 1/4/00 1/4/00 SM991225 EPA 6010	Order ID:	18409	Lab Sa	mple ID:	18409-	005	Client	Sample ID: ST	NCC-05-2.0	
Arsenic 21 5 1 5 mg/Kg 1/4/00 1/4/00 SM991225 EPA 6010 Lead 9.5 5 1 5 mg/Kg 1/4/00 1/4/00 SM991225 EPA 6010	Sample Time:	9:58 AM	Sam	ple Date:	1/3/00			Matrix: So	lid	
.ead 9.5 5 1 5 mg/Kg 1/4/00 1/4/00 SM991225 EPA 6010	'arameter	Result	DF	PQL	DLR	Units	PrepDate	Analysis Date	QC Batch ID	Method
J. 1. 10 J. 1. 10 J. 1. 10 J. 1. 10 J.	Arsenic	21	5	1	5	mg/Kg	1/4/00	1/4/00	SM991225	EPA 60101
	ead	9,5	5	1	5	mg/Kg	1/4/00	1/4/00	SM991225	EPA 60101
OF = Dilution Factor ND = Not Detected DLR = Detection Limit Reported PQL = Practical Quantitation Limit	OF = Dilution Factor	ΝŤ	D = Not Data	eted		DID - D-	action Limit Dan	orted	DOL Drawlast O	entitation T in 14

Michelle L. Anderson, Laboratory Director

Page 1 of 3

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/5/00

Date Received: 1/4/00 Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

<u> </u>				i	•		•	
Order ID:	18409	Lab Sample ID:	18409-00	06	Client	Sample ID: ST	NCC-05-4.0	,
Sample Time:	10:02 AM	Sample Date:	1/3/00			Matrix: Sol	id	
Parameter Arsenic Lead	Result 33 23	DF PQL 5 1 5 1	DLR 5 5	Units mg/Kg mg/Kg	PrepDate: 1/4/00 . 1/4/00 .	Analysis Date 1/4/00 1/4/00	QC Batch ID SM991225 SM991225	Method EPA 6010B EPA 6010B
Order ID:	18409	Lab Sample ID:	18409-0)7	Client	Sample ID: ST	NCC-05-9.0	
Sample Time:	10:20 AM	Sample Date:	1/3/00	i		Matrix: Sol	id	•
Parameter Arsenic Lead	Result 25 11	DF PQL 5 1 5 1	DLR 5 5	Units mg/Kg mg/Kg	PrepDate 1/4/00 1/4/00	Analysis Date 1/4/00 1/4/00	QC Batch ID SM991225 SM991225	Method EPA 6010B EPA 6010B
Order ID:	18409	Lab Sample ID:	18409-0	8	Client	Sample ID: ST	NCC-06-1.0	
Sample Time:	10:37 AM	Sample Date:	1/3/00		•	Matrix: Sol	id	
Parameter Arsenic Lead	Result 310 95	DF PQL 5 1 5 1	DLR 5 5	Units mg/Kg mg/Kg	PrepDate 1/4/00 1/4/00	Analysis Date 1/4/00 1/4/00	QC Batch ID SM991225 SM991225	Method EPA 6010B EPA 6010B
Order ID:	18409	Lab Sample ID:	18409-00	09	Client	Sample ID: ST	NCC-06-3.0	· · · · · · · · · · · · · · · · · · ·
Sample Time:	10:42 AM	Sample Date:	1/3/00			Matrix: Sol	id	**
Parameter Arsenic Lead	Result 7.2 7.6	DF PQL 5 1 5 1	DLR 5 5	Units mg/Kg mg/Kg	PrepDate 1/4/00 1/4/00	Analysis Date 1/5/00 1/5/00	QC Batch ID SM000102 SM000102	Method EPA 6010B EPA 6010B
Order ID:	18409	Lab Sample ID:	18409-0	10	Client	Sample ID: ST	NCC-06-4.0	
Sample Time:	10.48 AM	Sample Date:	1/3/00	•		Matrix: Sol	id	
Parameter Arsenic Lead	Result 11 12	DF PQL 5 1 5 1	DLR 5 5	Units mg/Kg mg/Kg	PrepDate 1/4/00 1/4/00	Analysis Date 1/5/00 1/5/00	QC Batch ID SM000102 SM000102	Method EPA 6010B EPA 6010B
DF = Dilution Factor	NI	D = Not Detected	· ·	DLR = Detec	tion Limit Rep	orted	PQL = Practical Qua	Intitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Jim Brake

Date: 1/5/00 Date Received: 1/4/00

Project Name: UP-SAC

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID:	18409	•	Lab S	ample ID:	18409-0)11	Client	Sample ID: ST	NCC-06-9.0	
Sample Time:	11:02	AM	San	ple Date:	1/3/00			Matrix: So	lid	· .
Parameter .	-	Result	DF	PQL	DLR	Units	PrepDate	Analysis Date	QC Batch ID	Method
Arsenic		ND	5	1 .	5	mg/Kg	1/4/00	1/5/00	SM000102	EPA 6010B
Lead		6.7	5	1	. ,	mg/Kg	1/4/00	1/5/00	SM000102	EPA 6010B
Order ID:	18409	•	Lab S	ample ID:	18409-0)12	Client	Sample ID: ST	N21-03-1.0	
Sample Time:	11:33	AM	San	ple Date:	1/3/00			Matrix: So	lid	
Parameter		Result	DF	PQL.	DLR	Units	PrepDate	Analysis Date	QC Batch ID	Method
Arsenic		23	5	1	5	mg/Kg	1/4/00	. 1/5/00	SM000102	EPA 6010B
Lead		71	. 5	1	5	mg/Kg	1/ 4/0 0	1/5/00	SM000102	EPA 6010B
Order ID:	18409		Lab S	ample ÍD:	18409-0)13	Client	Sample ID: ST	N21-03-3.0	
Sample Time:	11:36	AM	San	ple Date:	1/3/00			Matrix: So	lid	•
Parameter		Result	DF	PQL	DLR	Units	PrepDate	Analysis Date	QC Batch ID	Method
Arsenic		6.6	, 5	1	5	mg/Kg	1/4/00	1/5/00	SM000102	EPA 6010B
Lead		23	5	1	5	mg/Kg	1/4/00	1/5/00	SM000102	EPA 6010B
Order ID:	18409		Lab S	ample ID:	18409-0)14	Client	Sample ID: ST	N21-03-9.0	
Sample Time:	11:50	AM	San	ple Date:	1/3/00	4		Matrix: So	lid	•
Parameter		Result	DF	PQL	DLR.	Units	PrepDate	Analysis Date	QC Batch ID	Method
Arsenic		8.4	5	. 1	5	mg/Kg	1/4/00	1/5/00	SM000102	EPA 6010B
_ead		23	5 .	1	5	mg/Kg	1/4/00	1/5/00	SM000102	EPA 6010B
Order ID:	18409		Lab S	ample ID:	18409-0	15	Client	Sample ID: ST	N21-03-10.0	٠.
Sample Time:	11:58	AM	San	ple Date:	1/3/00	· ·		Matrix: So	lid	·
Parameter		Result	DF	PQL	DLR	Units	PrepDate	Analysis Date	QC Batch ID	Method
Arsenic .		ND	, 5	1	5	mg/Kg	1/4/00	1/5/00	SM000102	EPA 6010B
Lead		7.0	5	. 1	5	mg/Kg	1/4/00	1/5/00	SM000102	EPA 6010B

STANDARD LAB QUALIFIERS (FLAGS)

All Entech lab reports now reference standard lab qualifiers. These qualifiers are noted in the adjacent column to the analytical result and are adapted from the U.S. EPA CLP program. The current qualifier list is as follows:

Qualifier (Flag)	Description
U	Compound was analyzed for but not detected
J	Estimated valued for tentatively identified compounds or if result is below PQL but above MDL
N	Presumptive evidence of a compound (for Tentatively Identified Compounds)
В .	Analyte is found in the associated Method Blank
E	Compounds whose concentrations exceed the upper level of the calibration range
D	Multiple dilutions reported for analysis; discrepancies between analytes may be due to dilution
X	Results within quantitation range; chromatographic pattern not typical of fuel

Laboratory Control Spikes METHOD: EPA 6010

QC Batch.#: SM991225 Matrix: Solid

Units: mg/kg

Date Analyzed: 12/30/99
Date Digested: 12/29/99 -01/04/00
Digestion Method: EPA 3050

Spiked Sample: Blank Spike

ARAMETER	Method #	MB mg/kg	SA mg/kg	SR mg/kg	SP mg/kg	SP %R	SPD mg/kg	SPD %R	RPD	RPD	QC LIMITS %R	
rsenic ead	6010 6010	<1.0 <1.0	50. 50.	0.0	43 42	85 84	45. 49.	91 98	6.1 15.3	25.0 25.0	75-125 ° 75-125	

efinition of Terms:

na: Not Analyzed in QC batch

MB: Method Blank SA: Spike Added SR: Sample Result

SP: Spike Result SP (%R): Spike % Recovery

SPD: Spike Duplicate Result

SPD (%R): Spike Duplicate % Recovery

525 Del Rey Avenue, Suite E Sunnyvale, CA 94086

QUALITY CONTROL RESULTS SUMMARY

Matrix Spike and Matrix Spike Duplicate

METHOD: EPA 6010

QC Batch #: SM991225

Matrix: Solid Units: mg/kg Date Analyzed: 12/30/99

Date Digested: 12/29/99 -01/04/00

Digestion Method: EPA 3050

Spiked Sample: 18367-002

ARAMETER	Method #	MB mg/kg	SA mg/kg	SR mg/kg	SP mg/kg	SP %R	SPD mg/kg	SPD %R	RPD	RPD (QC LIMITS %R
rsenic	6010	<1.0	50.	∮15.1	51.	72	58.	85	12.3	25.0	64-115
ead	6010	<1.0	50.	6.5	51.	88	50.	88	0.7	25.0	64-115
1	,		•					ļ			! !

alculated Recoveries Outside of Control Limits:

efinition of Terms:

na: Not Analyzed in QC batch

nc: Not Calculated MB: Method Blank SA: Spike Added SR: Sample Result

SP: Spike Result

SP (%R): Spike % Recovery

SPD: Spike Duplicate Result

SPD (%R): Spike Duplicate % Recovery

Matrix Spike/Matrix Spike Duplicate

.QC Batch #: DS000102

Matrix: Solid Units: mg/Kg Date analyzed:

01/05/99

Date extracted:

01/04/99

Quality Control Sample:

18409-004

PARAMETER	Method #		SA mg/Kg	SR .mg/Kg	SP mg/Kg	SP %R	SPD mg/Kg	SPD %R	RPD	RPD	QC LIMITS %R
Diesel	8015M	<1.0	25.	ND	20	79	20	81	2.9	30	50-150

Hexocosane

79% 93%

86%

65-135

Calculated Recovery Outside of Control Limits:

Definition of Terms:

MB: Method Blank

na: Not Analyzed in QC batch

SA: Spike Added

SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result

SP (%R): Spike % Recovery

SPD: Spike Duplicate Result

SPD (%R): Spike Duplicate % Recovery

NC: Not Calculated

Laboratory Control Spikes

QC Batch #: DS000102

Matrix: Solid Units: mg/Kg Date analyzed:

01/05/00

Date extracted:

01/04/00

Quality Control Sample:

Blank Spike

ARAMETER	Method #	MB mg/Kg	SA mg/Kg	SR mg/Kg	SP mg/Kg	SP %R	SPD mg/Kg	SPD %R	RPD	(RPD	QC LIMITS %R
riesel	8015M	<1.0	25	ND	19	76	18	74	2.7	30	50-150

'exocosane

2% 849

77%

65-135

efinition of Terms:

MB: Method Blank

na: Not Analyzed in QC batch

SA: Spike Added

SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result

SP (%R): Spike % Recovery

SPD: Spike Duplicate Result

SPD (%R): Spike Duplicate % Recovery

NC: Not Calculated

Laboratory Control Spikes METHOD: EPA 6010

QC Batch #: SM000102

Matrix: Şolid

Units: mg/kg

Date Analyzed: 01/05/00 Date Digested: 01/04/00 Digestion Method: EPA 3050

Spiked Sample: Blank Spike

												1
RAMETER	Method #	MB	SA	SR	SP	SP	SPD	SPD	RPD		QC LIMITS	
	<u> </u>	mg/kg	mg/kg	mg/kg	mg/kg.	%R	mg/kg	%R		RPD	%R	
senic	6010	<1.0	50.	0.0	47.	94	45.	91	3.4	. 25.0	75-125	7
dmium	6010	<1,0	50.	0.0	44.	88	47.	94	6.5	25.0	75-125	ļ
romium	6010	<1.0	50.	0.0	51.	101	46.	93	9.0	25.0	75-125	1
pper	6010	<1.0	50.	0.0	49.	97	49.	99	1.7	25.0	75-125	
ad	6010	<1.0	50.	0.0	46.	92	48.	. 96	4.9	25.0	75-125	
ckel	6010	<1.0	50.	0.0	46.	91	47.	93	2.1	25.0	75-125	İ
enium	6010	<1.0	50.	0.0	43.	85	43.	86	1.3	25.0	75-125	1
ac	6010	<1.0	50.	0.0	45.	90	48.	95	6.3	25.0	75-125	
												į

nition of Terms:

na: Not Analyzed in QC batch

MB: Method Blank SA: Spike Added SR: Sample Result SP: Spike Result

SP (%R): Spike % Recovery SPD: Spike Duplicate Result

SPD'(%R): Spike Duplicate % Recovery

Matrix Spike and Matrix Spike Duplicate METHOD: EPA 6010

QC Batch #: SM000102 Matrix: Solid

Units: mg/kg

Date Analyzed: 01/05/00
Date Digested: 01/04/00
Digestion Method: EPA 3050
Spiked Sample: 18409-009

					Υ.						
PARAMETER	Method #	MB	SA	SR	SP	SP	SPD	SPD	RPD	(QC LIMITS
·		mg/kg	mg/kg	mg/kg	mg/kg	%R	mg/kg	%R		RPD	%R
Arsenic	6010	<1.0	50.	0.0	43.	86	32.	64	29.6	25.0	64-115
Cadmium	6010	<1.0	50.	0.0	38.	77	38.	77	0.0	25.0	70-100
Chromium	6010	<1.0	50.	32.8	112.	158	111.	157	0.2	25.0	68-112
Copper	6010	<1.0	50.	16.6	50.	67	50.	67	0.1	25.0	75-109
Lead	6010	<1.0	50.	7.6	49.	83	49.	84	0.8	25.0	64-115
Nickel	6010	<1.0	50. j	54.6	83.	57	83.	56	0.7	25.0	72-112
Selenium	6010	<1.0	50.	0,0	45.	90	35.	70	24.7	25.0	67-103
Zinc	6010	<1.0	<i>5</i> 0.	24.8	66.	82	66.	82	0.2	25.0	69-119

Calculated Recoveries Outside of Control Limits:

Chromium

Copper Vickel

Definition of Terms:

na: Not Analyzed in QC batch

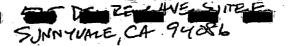
nc: Not Calculated MB: Method Blank SA: Spike Added SR: Sample Result SP: Spike Result

SP (%R): Spike % Recovery

SPD: Spike Duplicate Result

SPD (%R): Spike Duplicate % Recovery

Custody Record


Sunnyvale, CA 94086

Quamerra-	_
-----------	---

QUA-4124 0797 Client		Project Mar	-		:					٠.	<u>.</u>			-			Dat			- ,-	•	1	C	hain of Custody f	^{lumb@} 2836
Dames & Moore		L	<u>``</u> m					٠.			• •		<u>.</u>						۱٩-		<u>! </u>		4		
Address 8801 Folson Blud, Swite 20	•	Telephone		•.		•											Lat	Nun	nber	•	,		_	. 1	. 7
8801 LOIZOW RING' 21745 5		916-		-	-88					8	<u>≁-c</u>	28	<u>0 2</u>	<u>-</u>	-	4	1_	/ 4 / 4			<u>. </u>		P	age	_ 01
City Sacramento CA 95	^ଡ ବି26	Site Contact	•	ماد		"	o Co	ntact				. [alysis é spa							· ·	•
Project Name		Carrier/Way			er								3		J	1			Ì	1.		-	-		
				*								1	Z	ead	-5			1		1.	.].	12	F-1	- Special-	Instr⊔ctions/
Contract/Purchase Order/Quote No.		·		Mat	rive	7			itain				-citackly	Lea	Ş V	· }	1	1					15	// Gonglio	s of Receipt
00173-195-044	<u>,</u>	,		wau		_		Pres	erva	tive	s				7	.	:	1		1	-		1/	h Coc	
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	-	Sed.	Soff	/ Junios	H2SO4	HNOS	ΗĞ	NaOH	ZnAc/ NaOH		TPH	1	10 10 10						1	<u> </u>		18409	7
STNCC-04-1.0	1/3/00	0915		_	X	<u> </u>	₫_	١.,	_				X	1	X		_ _	\perp	\perp	1		1	_	001	
STNCC-04-3.0	9	0920		_	11	1	1	_					1	1	1		\perp	1	\perp	\perp		1.	_	007	,
STNCC- DY-4.0		0925		1	Ш	Щ	1	1	L			_			Ш			\perp	1	_	1	1	\perp	003	·
5NCC-04-9.0	<u> </u>	0945		1	Ш	11	1	$oldsymbol{ol}}}}}}}}}}}}}}$		<u> </u>			Ш			_				L	\perp	_ _	_	004	
5MCC-05-20		0958		<u> </u> .	\coprod	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	<u> </u>		L	_		_	Ц			_	\bot	\perp	_	_ _	\perp			005	• :
SMCC-05 -4.0		1005		\perp	11	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	1_	<u> </u>		_		.				_	\perp	\perp	<u> </u> -	\perp	\downarrow	_	_	006	
STNCC-05-9.0		1020		1	\coprod	\coprod	1_	\perp	_	_		_			Ш			1	1	\perp	\perp	1_	1_	007	·
SMCC-06-1.0		1037			Щ	Щ	_	_				_	_	4	Ш	_	_	1	1	_	_	1	↓_	008	
STNCC-46-3.0		1042			\coprod	Щ	_	<u> </u> _	L	_		_	4	\perp	Ш	_	4	\perp	\perp	1	1	1_	1	009	
STNCC-06-40	<u> </u>	1048		1	\coprod	Ц	_	<u> </u>	_	L		_	4	\perp		_		_	1.	4	\downarrow	<u> </u>	ļ_	010	
5MCC-06-9-0		1102		_	- 11	4		_	_					4	Ш		4		1	4	1	_	ļ	011	
SW21-03-1.7 Possible Hazard Identification	au .	1173		L	4	d	<u> </u>	上	<u> </u>	<u>L</u> _	1		\mathbf{V}	V	4					1	1	_		012	· .
Possible Hazard Identification Non-Hazard Flammable Skin Irritant	Poison B	Unknown [[ample Ret			: ent		Dispo	osal E	By La	ab		Arch	ive F	or _		: м	onths					ssess onths,	ed if samples are	retained
Turn Around Time Required							_			_	s (Spe							-		-					
24 Hours 7 Days 14 Days	21 Days	Other_	<u>Ku</u>																					•	
1. Refirefluished By		Date	ומ	Tim	ه (3ک	2	1.	Recei	ived .	Ву					-									Date	Time
(2 Helinquished By		Date		Tim	_		2.	Recei	ived .	Ву													<u>-</u> -	Date	Time
3. Relinquished By	· · · · · · · · · · · · · · · · ·	Date	·	Tim	в		3.	Recei	ived .	By p	, R	Joel	na	1					<u></u>		·		l	V\$100	Time 90
Comments Analytical Methods	as P	er ag	ree	m	ru4		w	\overline{L}	Э	۵.۸	ne:	s (26	Th	00	رو									

DISTRIBUTION: WHITE: Stays with the Sample; CANARY - Returned to Client with Report; PINK - Field Copy

Chain Chain Chain Custody Record

QUA-4124 0797	- 12										·					16		_				-т	<u> </u>		Month	·
Client Mass & Mange	Project Ma			B	04		- E	•								Da	te /	/_	- [3 7	`	İ	Chai	in of Custody	2°	6823
Address	Telephone										_					Lai	Nun		1	<u> </u>		\dashv				
\$\$01 FOLSON BLVD SLITE 200	911	_		7-8	80	0	<u> </u>		3	8-	<u> </u>	<u>738</u>	0	2									Pag		of _	<u>Z_</u>
Client Moore Address State Zip Code Project Name	Site Conta		٠,		La	b Cof	ntact				ji	ري	_	ा र ा	Ana more		(Attace is				1	·	_			
Project Name UP GA-C	Carrier/Wa	ıybili M	Vumb	er .								-extrackly	47	ARSENIC										Specia	Instruc	tions/
Contract/Purchase Order/Quote No.		T			Ţ		Cont	taine	rs &			3	١ ١	য							17		3/		amf p	
00173-195-044	···	1_	Mai	ITIX			Pres	erva	tives	5			A	الح								#	5	$U \otimes$		
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Time	Aqueou	Sed.	Pos Sol	Unpres	H2S04	HNOS	HCI	NaOH	NaOH NaOH		75	2	47.0			1	-	1.	_	ļ			18409	7	
	0 1176	-		X	= 2	_			w on 19		Ē.:	×	×	Ą	÷. ≥ ₹		= 1 : =		*	-	= =		=	013	77735	## · * _ # = _ ; ·
STN21-03-9.0	1150	_		1	9				_			1	1	19	_	4	\bot	_	\perp	1	1	_	_	04		
STN 21 - 03-10.0	1128			7	1	4						4	9	4				٠,	\perp	\perp	_	1	_	015) A.,	
		1_																\perp	╧		_	\perp	_			
		= "						er men	> - 5 - 2	ور آهند- ميلا	,				-	-			-		w < . in	ALC U	-38. 30		v =	ا المحت
		_			┵								<u> </u>				_	\downarrow	\perp	\perp	_	\perp	╧	<u> </u>		
																			L.		\perp				ϵ^{i}	
						<u> </u>		Ŀ	_				L				1				_	_		. *	<u> </u>	
																丄		\perp		\perp	1			·	· .	
																			<u> </u>						·	
																			ļ			-				
Possible Hazard Identification	1	Samp	le Dis	posal	<u> </u>				•										lee	mav	he s	1000	ssed	if samples a	e reteined	
□ Non-Hazard □ Flammable □ Skin Irritant □ Poison B □	Unknown	□ R	eţum	To Cli	ent		Dispo						ive.i	or_	<u>. </u>	^	fonth									
Turn Around Time Required	-	Q.	ز نے	, ·		100	Req	uiren	nents	(Spe	ecify)														
24 Hours	Date	100	JZE Tin		=	1,	Recei	ved l	Riv		4			_	-		-						. D	ate	Time	
1. Relinatished By	1/3/	00	1	63	S	"	10001		-,																	•
E. Fielinquished By	Date		Tir			2. 1	Recei	ived l	3 <i>y</i>					-					-				D.	ate	Time	- - -
3. Relinquished By	Date		Tir	ne	. ,	3.1	Recei	ived l	ં 4	0	R	əch	wj.	in in										4/00	Time 90	
Comments WANT CA ME-DIODS A PER DISTRIBUTION: MAUTE Standard to Cl	AGI			_		C	۸/	l) <i>a</i>	Mε	<u> </u>)؛ رج د	14	or or	<u>Z≘</u>		• •							, – –		<u>.</u>

CA ELAP# 1-2346

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

December 27, 1999

Sandra Dittmar

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Order: 18320

Date Collected: 12/22/99

Project Name:

Date Received: 12/23/99

Project Number:

P.O. Number: 00173-195-044

Project Notes:

On December 23, 1999, 15 samples were received under documentented chain of custody. Results for the following analyses are attached:

Matrix

Test

Lead

Arsenic

Method EPA 6010

Solid ,

enic

EPA 6010B

TPH, Extractable

EPA 8015 MOD. (Extractable)

Chemical analysis of these samples has been completed. Summaries of the data are contained on the following pages. USEPA protocols for sample storage and preservation were followed.

Entech Analytical Labs, Inc. is certified by the State of California (#I-2346). If you have any questions regarding procedures or results, please call me at 408-735-1550.

Sincerely,

Michelle L. Anderson

Lab Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 12/27/99

Date Received: 12/23/99

Project Name: -Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

		<u>}</u>				
Order ID:	18320	Lab Sample ID:	18320-001	Client Sample ID: S'	INCC-01-1.0	
Sample Time:	11:40 AM	Sample Date:	12/22/99 ⁴	Matrix: S	olid	
Parameter	Result	DF PQL	DLR Units	PrepDate Analysis Date	QC Batch ID	Method
Arsenic	240	5 1	5 mg/Kg	12/23/99 12/27/99	·SM991223	EPA 6010B
Lead	310	5 1	5 mg/Kg	12/23/99 12/27/99	SM991223	EPA 6010B
Order ID:	18320	Lab Sample ID:	18320-002	Client Sample ID: S'	TNCC-01-3.0	
Sample Time:	11:50 AM	Sample Date:	12/22/99	Matrix: S	olid	
Parameter	Result	DF PQL	DLR Units	PrepDate Analysis Date	QC Batch ID	Method
Arsenic	ND	5 1	5 mg/Kg	12/23/99 12/27/99	SM991223	EPA 6010B
Lead .	8.9	5 1	5 mg/Kg	12/23/99 12/27/99	SM991223	EPA 6010B
Order ID:	18320	Lab Sample ID:	18320-003	Client Sample ID: S	ΓNCC-01-9.0	
Sample Time:	12:25 PM	Sample Date:	12/22/99	Matrix: S	olid	
Parameter	Result	DF PQL	DLR Units	PrepDate Analysis Date	QC Batch ID	Method
Arsenic	47	5 1	5 mg/Kg	12/23/99 12/27/99	SM991223	EPA 6010B
Lead	16	5	5 mg/Kg	12/23/99 12/27/99	SM991223	EPA 6010B
Order ID:	18320	Lab Sample ID:	18320-004	Client Sample ID: S	TNCC-02-1.0	
Sample Time:	1:05 PM	Sample Date:	12/22/99	Matrix: S	olid	
Parameter	Result	DF PQL	DLR Units	PrepDate Analysis Date	QC Batch ID	Method
Arsenic	150	5 1	5 mg/Kg	12/23/99 12/27/99	SM991223	EPA 6010B
Lead	70	5 . 1	5 mg/Kg	12/23/99 12/27/99	SM991223	EPA 6010B
Order ID:	18320	Lab Sample ID:	18320-005	Client Sample ID: S	TNCC-02-3.0	
Sample Time:	1:15 PM	Sample Date:	12/22/99	Matrix: S	olid	
Parameter	Result	DF PQL	DLR Units	PrepDate Analysis Date	QC Batch ID	Method
Arsenic	ND	5 1	5 mg/Kg	12/23/99 12/27/99	SM991223	EPA 6010B
Lead .	7.4	5 1	5 mg/Kg	12/23/99 12/27/99	SM991223	EPA 6010B
DF = Dilution Factor	N	D = Not Detected	DLR = Det	ection Limit Reported	PQL = Practical Qua	ntitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 12/27/99

Date Received: 12/23/99

Project Name: Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

		Certific	u Analytical N	chorr			
Order ID:	18320	Lab Sample ID:	: 18320-006	Client Sample ID: S	TNCC-02-7.0		
Sample Time:	1:55 PM	Sample Date:	: 12/22/99	Matrix: S	olid_		
Parameter	Result	DF PQL	DLR Units	PrepDate Analysis Date	QC Batch ID	Method	
Arsenic	ND	5 1	5 mg/Kg	12/23/99 12/27/99	SM991223	EPA 6010B	
Lead	11,	5 1	5 mg/Kg	12/23/99 12/27/99	SM991223	EPA 6010B	
Order ID:	18320	Lab Sample ID:	18320-007	Client Sample ID: S	TNCC-03-1.0	D	
Sample Time:	2:00 PM	Sample Date:	12/22/99	Matrix: S	olid		
Parameter	Result	DF PQL	DLR Units	PrepDate Analysis Date	QC Batch ID	Method	
Arsenic	190	5 1	5 mg/Kg	12/23/99 12/27/99	SM991223	EPA 6010B	
Lead	47 0	5 1	5 mg/Kg	12/23/99 12/27/99	SM991223	EPA 6010B	
•		<u>. </u>	<u>.</u>	<u> </u>	·	:	
Order ID:	18320	Lab Sample ID:	18320-008	Client Sample ID: S	TNCC-03-3.0		
Sample Time:	2:10 PM	Sample Date:	e Date: 12/22/99 Matrix: Solid				
Parameter	Result	DF PQL	DLR Units	PrepDate Analysis Date	QC Batch ID	Method	
Arsenic	31	5 1	5 mg/Kg	12/23/99 12/27/99	SM991223	EPA 6010B	
Lead	120	5 1	5 mg/Kg	12/23/99 12/27/99	SM991223	EPA 6010B	
Order ID:	18320	Lab Sample ID:	18320-009	Client Sample ID: S	TNCC-03-9.0		
Sample Time:	2:45 PM	Sample Date:	12/22/99	Matrix: S			
Parameter	Result	DF PQL	DLR Units	PrepDate Analysis Date	QC Batch ID	Method	
Arsenic	ND	5 1	5 mg/Kg	12/23/99 12/27/99	SM991223	EPA 6010B	
Lead	12 .	5 1	5 mg/Kg	12/23/99 12/27/99	SM991223	EPA 6010B	
0.1.70	10200		10000 010		PTD TA1 O1 1 0		
Order ID:	18320	Lab Sample ID:	18320-010	Client Sample ID: S	TN21-01-1.0		
Sample Time:	3:15 PM	Sample Date:	12/22/99	Matrix: S	olid	s - 1	
Parameter ,	Result	DF PQL	DLR Units	PrepDate Analysis Date	QC Batch ID	Method	
Arsenic	300	5 5 . 1	5 mg/Kg	12/23/99 12/27/99	SM991223	EPA 6010B	
Lead .	85	5 1	5 mg/Kg	12/23/99 12/27/99	SM991223	EPA 6010B	
				•			
DF = Dilution Factor	NI	D = Not Detected	DLR = Det	ection Limit Reported	PQL = Practical Qua	antitation Limit	

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

Page 2 of 3

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 12/27/99

Date Received: 12/23/99

Project Name: Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

•		Certifie	d Analytical R	eport					
Order ID:	18320	Lab Sample ID:	18320-011	Client Sample ID: S	TN21-01-3.0				
. Sample Time:	3:30 PM	Sample Date:	12/22/99	Matrix: S	olid				
Parameter	Result	DF PQL	DLR Units	PrepDate Analysis Date	QC Batch ID	Method			
Arsenic	72	5 · 1	5 mg/Kg	12/23/99 12/27/99	SM991223	EPA 6010B			
Lead	82	5 1	5 mg/Kg	12/23/99 12/27/99	SM991223	EPA 6010B			
Order ID:	18320	Lab Sample ID:	18320-012	Client Sample ID: S	TN21-01-9.0	7			
Sample Time:	3:55 PM	Sample Date:	Sample Date: 12/22/99 Matrix: Solid						
Parameter	Result	DF PQL	DLR Units	PrepDate Analysis Date	QC Batch ID	Method			
Arsenic	ND	5 1	5 mg/Kg	12/23/99 12/27/99	SM991223	EPA 6010B			
Lead	7.6	5 1	5 mg/Kg	12/23/99 12/27/99	SM991223	EPA 6010B			
Order ID:	18320	Lab Sample ID:	18320-013	Client Sample ID: S	TN21-02-1.0				
Sample Time:		Sample Date:		Matrix: S					
Parameter	Result	DF PQL	DLR Units	PrepDate Analysis Date	QC Batch ID	Method			
Arsenic `	55	5 1	5 mg/Kg	12/23/99 12/27/99	SM991224	EPA 6010E			
Lead	8.7	5 1	5 mg/Kg	12/23/99 12/27/99	SM991224	EPA 6010E			
) R						
Order ID:	18320	Lab Sample ID:	18320-014	Client Sample ID: S	TN21-02-5.0				
Sample Time:	4:22 PM	Sample Date:	12/22/99	Matrix: S	olid				
Parameter	Result	DF PQL	DLR Units	PrepDate Analysis Date	QC Batch ID	Method			
Arsenic	18	5 1	5 mg/Kg	12/23/99 12/27/99	SM991224	EPA 6010E			
Lead	11	5 1	5 mg/Kg	12/23/99 12/27/99	SM991224	EPA 6010E			
Order ID:	18320	Lab Sample ID:	18320-015	Client Sample ID: S	STN21-02-9.0				
Sample Time:	4:25 PM	Sample Date:	12/22/99	Matrix: S	Solid				
Parameter	Result	DF PQL	DLR Units	PrepDate Analysis Date	QC Batch ID	Method			
Arsenic	ND	5 ' 1 ,	5 mg/Kg	12/23/99 12/27/99	SM991224	EPA 6010I			
Lead	9.7	5 1	5 mg/Kg	12/23/99 12/27/99	SM991224	EPA 60101			
		74 1				•			
DF = Dilution Factor	, , , , , , , , , , , , , , , , , , ,	ND = Not Detected	DLR = De	tection Limit Reported	PQL = Practical Qu	antitation Limit			

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

Page 3 of 3

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name: Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Sample Time: 11:40 AM	-	Samn								
		Samp	le Date	: 12/22	/99		N	latrix: So	lid	
arameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Bunker Oil	ND		1	13	13	mg/Kg	12/23/99	12/27/99	DS991211	EPA 8015 MOD. (Extractable)
	•				•	Surroga Hexacosa		Surrogate R	Recovery	Control Limits 65 - 135
'arameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Diesel	' ND	٠	< 1	1	. 1	mg/Kg	12/23/99	12/27/99	DS991211	EPA 8015 MOD. (Extractable)
			·			Surroga Hexacosa		Surrogate F	Recovery	Control Limits 65 - 135
							,	102		
arameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Fuel Oil	ND		. 1	13	13	mg/Kg	12/23/99	12/27/99	DS991211	EPA 8015 MOD (Extractable)
		÷				Surroga Hexacosa		Surrogate F 109	Recovery	Control Limits 65 - 135
arameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Hydraulic Oil	ND		1	13	13	mg/Kg	12/23/99	12/27/99	DS991211	EPA 8015 MOD (Extractable)
			- :			Surroga Hexacosa		Surrogate F 109	Recovery	Control Limits 65 - 135
arameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Jet Fuel (JP-5)	ŅD	•	ŀ	-1	l	mg/Kg	12/23/99	12/27/99	DS991211	EPA 8015 MOD (Extractable)
			•			Surroga Hexacosa		Surrogate I 109	Recovery	Control Limits 65 - 135
OF = Dilution Factor	ND =	Not Detec	ted .		DLR =	= Detection	Limit Reported		PQL = Practical	Quantitation Limit

Michelle L. Anderson, Laboratory Director

Entech Analytical Labs, Inc.

CA ELAP# 1-2346

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826 Attn: Sandra Dittmar Date: 1/7/00

Date Received: 12/23/99

Project Name: Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

							•	•				
	Order ID:	18320		Lab Sa	ample ID	: 1832	0-001		Client Sam	ple ID: S7	TNCC-01-1.0	
	Sample Time:	11:40 AN	М	Sam	ple Date	: 12/2	2/99			Matrix: So	olid	
_	Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
	TPH as Kerosene		ND		. 1	l·	1	mg/Kg	12/23/99	12/27/99	DS991211	EPA 8015 MOD (Extractable)
	•	•						Surroga	ite	Surrogate l	Recovery	Control Limits
Ï	•				\$6	•		Hexacosa	ane	109	•	65 - 135
					F.			٠,				
•	Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
	TPH as Motor Oil	,	22 .		1	13	13	mg/Kg	12/23/99	. 12/27/99	DS991211	EPA 8015 MOD (Extractable)
					•			Surroga	ıtė	Surrogate l	Recovery	Control Limits
	·					•		Hexacos	ane	109		65 - 135
Ì	Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
•	TPH as Stoddard Solv	ent	ND		1	÷ 1	1	mg/Kg	12/23/99	12/27/99	DS991211	EPA 8015 MOD (Extractable)
		÷			į.			Surroga	ite	Surrogate l	Recovery	Control Limits
ı	•						•	Hexacosa	ane	109		65 - 135
1												

Comment:

Report amended 1/6/00

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

REPLACEMENT PAGE
DATE 1/14/00
INITIALS STD

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

· Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name: Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID: 18320	•	Lab Sa	mple II): 1832	0-002		Client Sam	ple ID: ST	NCC-01-3.0	•
Sample Time: 11:50 Al	M	Sam	ple Dat	e: 12/22	2/99		1	Matrix: So	lid	
Parameter	Result	Flag	DF.	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Bunker Oil	ND	•	1	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
	•				٠.	Surroga	ite	Surrogate F	lecover ' y	Control Limits
			•			Hexacosa	ane	99		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Diesel	ND -		1	1	1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
						Surroga	ate	Surrogate F	Recovery	Control Limits
·						Hexacos	ane	99		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Fuel Oil	ND		1	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
						Surroga	ite	Surrogate F	Recovery	Control Limits
					•	Hexacos	ane.	99		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
ГРН as Hydraulic Oil	ND		1	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
·	,					Surroga	ate	Surrogate I	Recovery	Control Limits
•						Hexacos	ane	99		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
ΓPH as Jet Fuel (JP-5)	ND		1	1	1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
						Surroga	ate	Surrogate I	Recovery	Control Limits
						Hexacos	ane	99		65 - 135
)F = Dilution Factor	ND	= Not Dete	cted	`	DLR	= Detection	n Limit Reporte	d	PQL = Practical	Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

REPLACEMENT PAGE

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name: Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID: 18320 Lab Sample ID: 18320-002 Client Sample ID: STNCC-01-3.0

			and the said								
Sample Time: 11:50	AM	Sam	ple Dat	e: 12/22	2/99	Matrix: Solid					
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method	
TPH as Kerosene	ND		. ³1	1	1,	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)	
		,				Surroga	ite:	Surrogate l	Recovery	Control Limits	
8					,	Hexacosa	ine	99		65 - 135	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Dáte	QC Batch ID	Method	
TPH as Motor Oil	ND		I	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)	
						Surroga	ite	Surrogate l	Recovery	Control Limits	
						Hexacosa	ane	99		65 - 135	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method	
TPH as Stoddard Solvent	ND		1	. . 1	1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)	
<u> </u>	•					Surroga	ite .	Surrogate l	Recovery	Control Limits	
12						Hexacosa	ne	99		65 - 135	

Comment:

Report amended 1/6/00

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

DATE 114 60 INITIALS SID

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name: Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID: 18320		Lab Sa	mple I	D: 1832	0-003		Client Sam	ple ID: ST	NCC-01-9.0	
Sample Time: 12:25 PM	1	Sam	ple Dat	e: 12/22	2/99		<u>.]</u>	Matrix: So	lid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Bunker Oil	ND	•	1	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
		•				Surroga	ate ·	Surrogate I	Recovery	Control Limits
		• .	٠	•		Hexacos	ane	.87		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Diesel	ND		1	i	1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
		•				Surroga	ate	Surrogate I	Recovery	Control Limits
						Hexacos	ane.	. 87		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Fuel Oil	ND		1	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
			:			Surroga	ate	Surrogate l	Recovery	Control Limits
						Hexacos	ane	87	•	65 - 135
Parameter '	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Hydraulic Oil	ND	·	1	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
						Surroga	ate -	Surrogate l	Recovery	Control Limits
						Hexacos	ane	87		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
ГРН as Jet Fuel (JP-5)	ND		1	1	1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
			. •		٠	Surroga Hexacos		Surrogate l 87	Recovery	Control Limits 65 - 135
									·-·	
DF = Dilution Factor	ND	= Not Dete	cted		DLR	□ Detection	n Limit Reporte	d	PQL = Practical	Quantitation Limit
Analysis performed by Entech A	nalytical La	bs, Inc. (CA	ELAP #	I-2346)						
		į.						R	eplacemen	T PAGE

Michelle L. Anderson, Laboratory Director

Entech Analytical Labs, Inc.

CA ELAP# 1-2346

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name:

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID: 18320)·	Lab Sa	mple ID:	1832	0-003		Client Sam	ple ID: S7	NCC-01-9.0	
Sample Time: 12:25	PM	Sam	ple Date:	12/22	2/99 ;		. 1	Matrix: Sc	olid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Kerosene	ND ·		1	1,	1 :	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
	•					Surroga	te	Surrogate I	Recovery	Control Limits
		•				Hexacosa	ine	87		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Motor Oil	ND		i	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
	_		·			Surroga	te	Surrogate l	Recovery	Control Limits
			1			Hexacosa	ane	87	-	65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Stoddard Solvent	ND		* 1	1	I,	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
<u> </u>		•	í			Surroga	ițe	Surrogate l	Recovery	Control Limits
			*		•	Hexacosa	ine	87		65 - 135
i										

Comment:

Report amended 1/6/00

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

DATE 1/14/00

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name:

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID:	18320		Lab Ša	imple ID	: 1832	0-004	•	Client Sam	ple ID: S7	NCC-02-1.0	
Sample Time:	1:05 PM Sample Date: 12/22/99 Matrix: Solid									·	
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Bunker Oil	•	ND		1.	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
			•				Surroga	te	Surrogate l	Recovery	Control Limits
							Hexacosa	ine ·	99	•	65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
ΓPH as Diesel		ND		1.	1.	1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD: (Extractable)
		•					Surroga	te .	Surrogate l	Recovery	Control Limits
							Hexacosa	ine .	99		65 - 135
Parameter ,		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
ΓPH as Fuel Oil		ND		. 1	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
	e e		٠.				Surroga	te	Surrogate l	Recovery	Control Limits
•	•		•				.Hexacosa	ine	99		65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Hydraulic Oil		ND		1	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
÷					• •		Surroga	te	Surrogate l	Recovery	Control Limits
							Hexacosa	ine	99		65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Jet Fuel (JP-5)		ND		. 1	1	1	mg/Kg	12/23/99 ·	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
			•				Surroga	te	Surrogate l	Recovery	Control Limits
•		•					Hexacosa	ine	99		65 - 135
OF = Dilution Factor Analysis performed by			= Not Dete			ĎLR :	- Detection	Limit Reported	 1	PQL = Practical	Quantitation Limi

Hichelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name: Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID: 18320	· ·	Lab Sa	mple II	D: 1832	0-004		Client Sam	ple ID: Si	TNCC-02-1.0	
Sample Time: 1:05 I	PM	Sam	ple Dat	e: 12/22	2/99]	Matrix: So	olid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Kerosene	ND		• 1	1	1 .	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
						Surroga	ite	Surrogate l	Recove ry	Control Limits
i i			þ			Hexacosa	ane	99		65 - 135
				•		٧,				*
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Motor Oil	ND		"1 .	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
						Surroga	ıte	Surrogate !	Recovery	Control Limits
						Hexacos	ane	99		65 - 135
Parameter	Result	Flag	DF	PQL	DER	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Stoddard Solvent	ND		1.	1.	1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
<u>_</u>						Surroga	ıte	Surrogate	Recovery	Control Limits
·						Hexacos	ane	99		65 - 135

Comment:

Report amended 1/6/00

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA/ELAP #1-2346)

Michelle L. Anderson, Laboratory Director

DATE 1/14/00 INITIALS STD

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name: Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID: 18	320		Lab Sa	mple I	D: 18320	0-005		Client Sam	ple ID: ST	NCC-02-3.0	
Sample Time: 1:	15 PM.		Sam	ple Dat	te: 12/22	/99		1	Matrix: So	olid	
Parameter]	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Bunker Oil		ND		. 1	. 13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
						-	Surroga	ite	Surrogate I	Recovery	Control Limits
٠.,	•						Hexacosa	ane	93	,	65 - 135
Parameter]	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Diesel		ND		.1	1	1 i	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
				•			Surroga	ite	Surrogate I	Recovery	Control Limits
							Hexacos		93		65 - 135
											· · · · · · · · · · · · · · · · · · ·
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Fuel Oil		ND		1	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
	;	-		•			Surroga	ite	Surrogate l	Recovery	Control Limits
							Hexacos	ane	93	•	65 - 135
Parameter]	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Hydraulic Oil		ND		1	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
•						,	Surroga	ate	Surrogate l	Recovery	Control Limits
							Hexacos	ane	93	•	65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Jet Fuel (JP-5)		ND		1	1	. 1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
							Surroga	ate	Surrogate !	Recovery	Control Limits
			•			•	Hexacos		93		65 - 135
		·		·	<u> </u>						
DF = Dilution Factor		ND	= Not Det	ected		DLR:	= Detection	ı Limit Reporte	ď	PQL = Practica	Quantitation Limit
DF = Dilution Factor Analysis performed by E	ntech Anal				/I-2346)	DLR	= Detection	n Limit Reporte	d	PQL = Practica	Quantitation Li

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

REPLACEMENT PAGE
DATE 1/14/00
INITIALS STD

ntech Analytical Labs, Inc.

CA ELAP# 1-2346

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name:

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID:	18320		Lab Sa	mple II): 1832	0-005		Client Sam	ple ID: ST	NCC-02-3.0	
Sample Time:	1:15 PM		Sam	ple Dat	e: 12/22	2/99	<u> </u>		Matrix: So	lid	·
Parameter	- 133714.001	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Kerosene	•	ND		1	ľ	1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
•	-			i.			Surroga	ite	Surrogate F	Recovery	Control Limits
						7	Hexacosa	ane	93		65 - 135
Parameter		Result	Flag	ĎГ	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Motor Oil		ИD		1	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
							Surroga	ite	Surrogate F	Recovery	Control Limits
							Hexacosa	ane	93	·	65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	, Analysis Date	QC Batch ID	Method
TPH as Stoddard Solv	ent	ND		1	1 .	1 .	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
							Surroga	ite	Surrogate I	lecovery	Control Limits
							Hexacosa	ane	93		65 - 135

Comment:

Report amended 1/6/00

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

DATE 1 14 00

INITIALS <u>SOD</u>

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name: Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID: 18	320		Lab Sa	mple ID	1832	0-006	•	Client Sam	ple ID: S	TNCC-02-7.0	
Sample Time: 1:	55 PM	·	Sam	ple Date	: 12/22	2/99		1	Matrix: So	olid	50 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
Parameter		Result	Flag	DF	PQL.	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Bunker Oil		ND		1	13	. 13	mg/Kg	12/23/99	~ 12/24/99	DS991211	EPA 8015 MOD (Extractable)
				•			Surroga	ite	Surrogate !	Recovery	Control Limits
* 							Hexacos	ane	82		65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Diesel		ND		. 1.	1	l	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
•		•				,	Surroga	ıte	Surrogate	Recovery	Control Limits
							Hexacos	ane	82	•	65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Fuel Oil		ND	.*	1	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
•						•	Surroga	ate	Surrogate	Recovery	Control Limits
•							Hexacos	ane .	82		65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Hydraulic Oil		ND		1	13	13	_mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
		•					Surroga	ıte	Surrogate	Recovery	Control Limits
•						•	Hexacos	ane .,	. 82		65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Jet Fuel (JP-5)		ND	•	1.	1	. 1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
				•			Surroga	ate	Surrogate	Recovery	Control Limits
						•	Hexacos	ane ,	82		65 - 135
DF = Dilution Factor		ND	= Not Det	ected	:	DLR =	= Detection	1 Limit Reporte	d	PQL = Practical	Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

DATE 1 12 60

INITIALS __SID

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name:

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

DLR

1

13

Order ID: 18320 Sample Time: 1:55 PM

TPH as Kerosene

TPH as Motor Oil

Lab Sample ID: 18320-006 Sample Date: 12/22/99

PQL

- 13

1

ĎΕ

Units

Client Sample ID: STNCC-02-7.0

Matrix: Solid

Analysis

Date

Method EPA 8015 MOD.

12/24/99 mg/Kg 12/23/99

QC Batch ID

DS991211

(Extractable)

Surrogate Hexacosane Surrogate Recovery 82

Control Limits 65 - 135

Result Flag DF PQL DLR Units Parameter

Flag

Result

ND

ND

ND

Extraction Date mg/Kg 12/23/99

Extraction

Date

Analysis QC Batch ID Date

Method EPA 8015 MOD.

12/24/99 DS991211

(Extractable)

Surrogate Hexacosane

Surrogate

Hexacosañe

Surrogate Recovery 82

Control Limits 65 - 135

Parameter

TPH as Stoddard Solvent

Flag DF **PQL** Result DLR 1

1

Units Extraction Date 12/23/99 mg/Kg

Analysis Date 12/24/99

Surrogate Recovery

82

QC Batch ID DS991211

Method EPA 8015 MOD.

(Extractable) **Control Limits**

65 - 135

· Comment:

Report amended 1/6/00

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

REPLACEMENT PAGE

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP-#I-2346)

Michelle L. Anderson, Laboratory Director

INITIALS

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Diftmar

Date: 1/7/00

Date Received: 12/23/99

Project Name:

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID: 18	320 .		Lab Sa	mple ID	: 1832	0-007		Client Sam	ple ID: ST	NCC-03-1.0	
Sample Time: 2:0	00 PM	_ <i>:</i>	Sam	ple Date	: 12/22	2/99		·	Matrix: So	lid	<u> </u>
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Bunker Oil		ND		2	13	26	mg/Kg	12/23/99	12/27/99	DS991211	EPA 8015 MOD. (Extractable)
	<i>.</i>						Surroga Hexacosa		Surrogate F 90	Recovery	Control Limits 65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Diesel		ND	. •	2	1	2	mg/Kg	12/23/99	12/27/99	DS991211	EPA 8015 MOD. (Extractable)
	•••			•			Surroga Hexacosa		Surrogate I 90	Recovery	Control Limits 65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Fuel Oil		ND		2	13	26	mg/Kg	12/23/99	12/27/99	DS991211	EPA 8015 MOD: (Extractable)
	•		•	:	•		Surroga Hexacosa		Surrogate I 90	Recovery	Control Limits 65 - 135
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Hydraulic Oil	*1	ND		2	13	26	mg/Kg	12/23/99	12/27/99	DS991211	EPA 8015 MOD. (Extractable)
							Surroga Hexacosa		Surrogate I 90	Recovery	Control Limits 65 - 135
Parameter	· · ·	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Jet Fuel (JP-5)	•	ND		2	1	2	mg/Kg	12/23/99	12/27/99	DS991211	EPA 8015 MOD. (Extractable)
			-	·			Surroga Hexacosa		Surrogate I 90	Recovery	Control Limits 65 - 135
DF = Dilution Factor		ND=	Not Det	ected		DLR =	Detection	Limit Reported		PQL = Practical	Quantitation Limit
Analysis performed by E	ntech Ana	lytical Labs	, Inc. (C/	A ELAP #I	-2346)				DAT	PLACEMENT	

Michelle L. Anderson, Laboratory Director

CA ELAP# 1-2346

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name: Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

I.O Method II EPA 8015 MOD (Extractable) Control Limits
11 EPA 8015 MOD (Extractable)
11 EPA 8015 MOD (Extractable)
(Extractable)
Control Limits
65 - 135
ID Method
11 EPA 8015 MOD (Extractable)
Control Limits
65 - 135
ID Method
11 EPA 8015 MOD (Extractable)
Control Limits
65 - 135

Comment:

Report amended 1/6/00

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

INITIALS :

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name: Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID: 18320		Lab Sa	mple II): 1832	0-008		Client Sam	ple ID: ST	NCC-03-3.0	
Sample Time: 2:10 PM	· .	Sam	ple Dat	e: 12/22	2/99		Ň	Matrix: Sc	lid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Bunker Oil	ND		1.	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
			•			Surroga	ite	Surrogate I	Recovery	Control Limits
•	-					Hexacos	ine	93		65 - 135
·						<u> </u>	·	<u> </u>		<u>. </u>
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Diesel	ND		1,	ı	1.	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
						Surroga	ite	Surrogate l	Recovery	Control Limits
	•					Hexacos	ane	93		65 - 135
		<u>.</u>								·
?arameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Fuel Oil	ND		1	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
						Surroga	ate:	Surrogate l	Recovery	Control Limits
						Hexacos	ane	93		65 - 135
· · · · · · · · · · · · · · · · · · ·	•								<u> </u>	<u> </u>
.'arameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis - Date	QC Batch ID	Method
PH as Hydraulic Oil	ND		1	13	13	mg/Kg	12/23/99	12/24/99	DS99121.1	EPA 8015 MOD. (Extractable)
						Surroga	ete	Surrogate l	Recovery	Control Limits
•						Hexacos	ane	93		65 - 135
'arameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Jet Fuel (JP-5)	ND		1	1	1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
					•	Surrog	ate .	Surrogate	Recovery	Control Limits
					٠	Hexacos	ane	93		65 - 135
)F = Dilution Factor	ND =	Not Det	ected		DLR =	≐ Detection	Limit Reported	1	PQL = Practical	Quantitation Limit
Analysis performed by Entech An	alytical Lab	s, Inc. (C.	A ELAP#	I-2346)				•	EPLACEMENT ATE 114	PAGE

1ichelle L. Anderson, Laboratory Director

CA ELAP# 1-2346

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name: Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID:	18320		Lab Sa	ample ID:	1832	0-008 ,		Client Sam	ple ID: Si	ΓNCC-03-3.0		
Sample Time:	2:10 PM		Sam	ple Date:	12/22	12/22/99			Matrix: So	olid	· · · · · · · · · · · · · · · · · · ·	
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method	
TPH as Kerosene		ND .		1,	1 .	. 1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)	
			•	3			Surroga	te	Surrogate 1	Recovery	Control Limits	
			•	i			Hexacosa	ine	93		65 - 135	
Parameter	•	Result	Flag	DF	PQL	DLR	Units	Extraction Date .	Analysis Date	QC Batch ID	Method	
TPH as Motor Oil		ND		ľ	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)	
•							Surroga	te	Surrogate l	Recovery	Control Limits	
		•				• •	Hexacosa	ine	93		65 - 135	
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method	
TPH as Stoddard Solver	nt	ND		1	Ì	1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)	
				ų,			Surroga	te ,	Surrogate I	Recovery	Control Limits	
							Hexacosa	ne .	. 93		65 - 135	

Comment:

Report amended 1/6/00

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

REPLACEMENT PAGE

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name: Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID: 18320	•	Lab Sa	mple II	D: 1832	0-009		Client Sam	ple ID: S7	FNCC-03-9.0	•
Sample Time: 2:45 PM		Sam	ple Dat	te: 12/2	2/99			Matrix: So	olid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Bunker Oil	ND		1.	· 13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
		•				Surroga	te	Surrogate I	Recovery	Control Limits
						Hexacosa	ine	95		65 - 135
Parameter	Result	Flag	-DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Diesel	ND		1	1	1	mg/Kg	12/23/99	12/24/99	D\$991211	EPA 8015 MOD. (Extractable)
						Surroga	ite	Surrogate l	Recovery	Control Limits
						Hexacosa	ine	95		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units.	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Fuel Oil	ND		1.	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
					. •	Surroga	ițe	Surrogate !	Recovery	Control Limits
		·				· Hexacos	ane	95	•	65 - 135
· <u> </u>					•			<u>.</u>	·	:
Parameter	Result	Flag	DF	PQL	DLR	. Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Hydraulic Oil	ND		1	13.	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
•		, .				Surroga	ite	Surrogate 1	Recovery	Control Limits
			. •		_	Hexacosa	ane	95		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
ГРН as Jet Fuel (JP-5)	ND		· I	1	·. 1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
•						Surrogs	ite	Surrogate	Recovery	Control Limits
				•	•	Hexacos	ane	95		65 - 135
OF = Dilution Factor	ND	= Not Dete	cted		DLR	= Detection	Limit Reported	<u> </u>	PQL = Practical	Quantitation Limit
Analysis performed by Entech An	alytical La	bs, Inc. (CA	ELAP#	I-2346)				REP	LACEMENT F	PAGE
	•				•				عاليا	na mara
					.,			DAT	<u> - 11714</u>	
1/4-						•		INIT	IALSSS	\mathcal{U}_{-}

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name:

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID:	18320		Lab Sa	mple ID:	1832	0-009	1	Client Sam	ple ID: S7	NCC-03-9.0	
Sample Time:	2:45 PM		Sam	ple Date:	12/22	2/99		1	Matrix: Sc	lid	
Parameter	,	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Kerosene	•	ND		1 , .	I	1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
1				Í			Surroga	te	Surrogate I	Recovery	Control Limits
				a a			Hexacosa	ne	95		65 - 135
Parameter		Result.	Flag	D F	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Motor Oil		ND ·		I 10 17	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
	, •			¥.			Surroga	te	Surrogate I	Recovery	Control Limits
							Hexacosa	ine	95		65 - 135
Parameter		Result	Flag .	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
FPH as Stoddard Solv	ent'	ND		1;	1 .	1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
رار	,			. å			Surroga	te .	Surrogate I	Recovery	Control Limits
							Hexacosa	ine	95		65 - 135

Comment:

Report amended 1/6/00

PF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #1-2346)

Michelle L. Anderson, Laboratory Director

DATE UP DO

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name: Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Sample Time: 3:15 PM Parameter TPH as Bunker Oil	Result ND	Samp Flag	ple Dat	PQL	2/99 DLR 13	Units		Matrix: So	lid QC Batch ID	Method
		Flag						-	QC Batch ID	Method
PH as Bunker Oil	ND		1 .	['] 13	13		Date	Date		
	•					mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
				•		Surroga Hexacosa		Surrogate P	tecovery	Control Limits 65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Diesel	ND .	•	. 1	1 .	.1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
					•	Surroga	te	Surrogate F	lecovery	Control Limits
					**	Hexacosa	nne	96		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
ΓΡΗ as Fuel Oil	ND		1.,	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
	•					Surroga	te	Surrogate P	lecovery	Control Limits
					•	Hexacosa	ine	96		65 - 135
'arameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Hydraulic Oil	ND ·		.1	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
	·					Surroga	ite	Surrogate F	lecovery	Control Limits
						Hexacosa	ane	96		65 - 135
'arameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Jet Fuel (JP-5)	ND 		1	1	1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
•						Surroga	ite	Surrogate F	lecovery	Control Limits
				•		Hexacosa	ine	96		65 - 135
OF = Dilution.Factor	ND:	= Not Deter	cted	<u></u>	DLR :	= Detection	Limit Reported		POL = Practical	Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

PREPLACEMENT PAGE

DATE 1400

INITIALS SOLD

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name: Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

,	Order ID:	18320		Lab Sa	mple ID:	1832	0-010		Client Sam	ple ID: S7	N21-01-1.0	
	Sample Time:	3:15 PM		Sam	ple Date:	12/22	2/99		ſ	Matrix: So	lid	
,	Parameter	-	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis -	QC Batch ID	Method
	TPH as Kerosene		ND		1	. 1	1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
-								Surroga	te	Surrogate I	Recovery	Control Limits
					4.4			Hexacosa	nne .	96		65 - 135
	Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Ì	TPH as Motor Oil	•	ND		1	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOI (Extractable)
					. •			Surroga	ite	Surrogate l	Recovery	Control Limits
Ì				•				Hexacos	ane	96		65 - 135
	Parameter		Result	Flag	р́F	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
	TPH as Stoddard Solv	/ent	ND		* 1	1	1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOI (Extractable)
					4.4			Surroga	ite	Surrogate 1	Recovery	Control Limits
A							**	Hexacos	ane	96		65 - 135

Comment:

Report amended 1/6/00

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

REPLACEMENT PAGE

INITIALS STID

Michelle L. Anderson, Laboratory Director

Dames & Moore

Order ID: 18320

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name:

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Client Sample ID: STN21-01-3.0

Certified Analytical Report

Lab Sample ID: 18320-011

Order 1D. 18320		Lau Sa	mpie n	D: 1032	0-011		Chem Sam	pie iD. 31	11121-01-3.0	
Sample Time: 3:30 PM	1	Sam	ple Dat	e: 12/22	2/99			Matrix: So	olid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Bunker Oil	ND		10	. 13	130	mg/Kg	12/23/99	12/27/99	DS991211	EPA 8015 MOD (Extractable)
						Surroga	ite	Surrogate l	Recovery	Control Limits
•					. •	Hexacos	ane	114		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Diesel	ND		· · 10	1	10	mg/Kg	12/23/99	12/27/99	DS991211	EPA 8015 MOD (Extractable)
•					•	Surroga		Surrogate l	**	Control Limits 65 - 135
		,				110,40003	anc .			05 - 155
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Fuel Oil	ND ·		10	.13	130	mg/Kg	12/23/99	12/27/99	DS991211	EPA 8015 MOL (Extractable)
						Surroga	ate	Surrogate l	Recovery	Control Limits
						Hexacos	ane	114		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Hydraulic Oil	ND		10	13	130	mg/Kg	12/23/99	12/27/99	DS991211	EPA 8015 MOD (Extractable)
• `						Surroga	ate	Surrogate l	Recovery	Control Limits
						Hexacos		114		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
ΓPH as Jet Fuel (JP-5)	ND		10	1	10	mg/Kg	12/23/99	12/27/99	DS991211	EPA 8015 MOI (Extractable)
٠.	•					Surroga Hexacos		Surrogate 1	-	Control Limits 65 - 135
					<u>.</u>	· · · · · · · · · · · · · · · · · · ·			·	03 - 155
'DF = Dilution Factor	ND	= Not Dete	ected		DLR	= Detection	Limit Reporte	d ,	PQL = Practica	Quantitation Limit
Analysis performed by Entech A	Analytical La	bs, Inc. (CA	A ELAP#	I-2346)				RE	PLACEMENT	PAGE
								DA	ITE 14	<u> </u>
6		·						IN	ITIALS	<u>an</u>

Michelle L. Anderson, Laboratory Director

CA ELAP# 1-2346

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826 Attn: Sandra Dittmar Date: 1/7/00

Date Received: 12/23/99

Project Name: Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph.

Certified Analytical Report

Order ID: 18320		Lab S	ample II	D: 1832	0-011	- · · · · · · · · · · · · · · · · · · ·	Client Sam	ple ID: S7	N21-01-3.0	
Sample Time: 3:30 PM	M Sample Date: 12/22/99							Matrix: Sc	lid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Kerosene	ND		10	. •	10	mg/Kg	12/23/99	12/27/99	DS991211	EPA 8015 MOD (Extractable)
			1.			Surroga	te	Surrogate I	Recovery	Control Limits
			·		•	Hexacosa	ine .	114		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Motor Oil	280		10	13	130	mg/Kg	12/23/99	12/27/99	DS991211	EPA 8015 MOD (Extractable)
				•		Surroga	tė	Surrogate l	Recovery	Control Limits
1			. 33		••	Hexacosa	ine	,: 114	,	65 - 135
Parameter 1	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Stoddard Solvent	ND ·		10	1	10:	mg/Kg	12/23/99	12/27/99	DS991211	EPA 8015 MOI (Extractable)
						Surroga	ite	Surrogate l	Recovery	Control Limits
			}	•		Hexacosa	ine	114		65 - 135

Comment:

Report amended 1/6/00

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

PREPLACEMENT PAGE

DATE 11/4 CO

INITIALS STD

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name:

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID: 18320		Lab Sa	mple I	D : 18320	0-012		Client Sam	ple ID: S7	N21-01-9.0	
Sample Time: 3:55 PM		Sam	ple Da	te: 12/22	2/99			Matrix: So	olid	·
Parameter	Result	Flag	DF	PQL	DLR	Units	Extráction Date	Analysis Date	QC Batch ID	Method
TPH as Bunker Oil	ND		1.	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
						Surroga Hexacos		Surrogate 1 90	Recovery	Control Limits 65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Diesel	ND		. 1	1	1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
	•	å	1.54		. •	Surroga Hexacos		Surrogate 1	Recovery	Control Limits 65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Fuel Oil	ND	.:	1	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
	٠	1	1		·	Surroga Hexacos	•	Surrogate I 90	Recovery	Control Limits 65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Hydraulic Oil	ND		1	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
	•	:			,	Surroga Hexacos		Surrogate 1 90	Recovery	Control Limits 65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
「PH as Jet Fuel (JP-5)	ND		1	1	1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
		•	,			Surroga Hexacos		Surrogate 1 90	Recovery	Control Limits 65 - 135
OF = Dilution Factor	NE	= Not Dete	cted	•	DLR :	= Detection	Limit Reporte	d	PQL = Practical	Quantitation Limit
Analysis performed by Entech Ar	ialytical La	bs, Inc. (CA	ELAP#	(I-2346)				REP	LACEMENT	PAGE

DATE 1 14 00
INITIALS 500

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name:

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID: 18320		Lab San	n ple II): 18320)-013·	•	Client Sam	ple ID: S7	ΓN21-02-1.0	
Sample Time: 4:15 PM	·	Samp	le Dat	e: 12/22	/99		<u> </u>	Matrix: So	olid.	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Bunker Oil	ND		1	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
			1	*		Surroga	ite	Surrogate l	Recovery	Control Limits
	· 	•				Hexacos	ine	97		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Diesel	ND	,	1	1	1 .	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
-						Surroga	ite	Surrogate l	Recovery	Control Limits
		,	- 1	· :		Hexacosa	ine	97		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Fuel Oil	ND	•	į	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
			**	*	•	Surroga	ite	Surrogate l	Recovery	Control Limits
	,	· · · · · · · · · · · · · · · · · · ·			•	Hexacosa	inė	97	•	65 - 135
Parameter I	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Hydraulic Oil	ND		; 1	13	.13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
ъ .			1	•	-	Surroga	ite	Surrogate l	Recovery	Control Limits
				· .		Hexacosa	ine	97	•	65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Jet Fuel (JP-5)	ND	:		1	1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
n ·	• .					Surroga	ite .	Surrogate l	Recovery	Control Limits
			J			Hexacosa	ine	. 97	•	65 - 135
DF = Dilution Factor	ND	= Not Detec	ted	:	DLR =	= Detection	Limit Reported	d	PQL = Practical	Quantitation Limit

REPLACEMENT PAGE

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name: Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID:	Order ID: 18320 Lab Sample ID: 18320-012 Client Sample ID: STN21-01-9.0										
Sample Time:	3:55 PM	·	Sam	ple Date	: 12/22	2/99			Matrix: So	olid	• • • • • • • • • • • • • • • • • • •
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Kerosene	•	ND	,	1	1	1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
						*	Surroga	te	Surrogate 1	Recovery	Control Limits
					, ,		Hexacos	ine	90		65 - 135
								•	*		
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Motor Oil	•	ND		1	- 13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
	• • •						Surrogs	ite ¹	Surrogate l	Recovery	Control Limits
	•		•			**************************************	Hexacos	ine	90		65 - 135
	<u> </u>		·					<u> </u>	<u> </u>		
Parameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Stoddard Solve	nt	ND	, ,	1	1	1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
,	:			:			Surroga	te	Surrogate l	Recovery	Control Limits
	٠,						Hexacos	ane	90		65 - 135

Comment:

Report amended 1/6/00

)F = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Laboratory Director

DATE 1 14 00 INITIALS SID

CA ELAP# 1-2346

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name:

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

					- 4	. —	,			
18320		Lab Sa	mple ID:	1832	20-013		Client San	nple ID: S7	ΓN21-02-1.0	
4:15 PM		Sam	ple Date:	12/2	2/99		<u> </u>	Matrix: So	olid	·
	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
	ND		Í	1 .	1 ;	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
	• .		1			Surroga	ite	Surrogate I	Recovery	Control Limits
	,	•				Hexacosa	ine	97		65 - 135
•	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
	ND		1	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
					A.	Surroga	ite j	Surrogate I	Recovery	Control Limits
			*:	1		Hexacosa	ine	97		65 - 135
	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
ent	ND		1	1	1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
			•		i	Surroga	te	Surrogate I	Recovery	Control Limits
		•			i	Hexacosa	ine ·	97		65 - 135
	4:15 PM	4:15 PM Result ND Result ND	4:15 PM Sample Result Flag ND Result Flag ND Result Flag ND	4:15 PM Sample Date: Result Flag DF ND 1 Result Flag DF ND 1 Result Flag DF	A:15 PM Sample Date: 12/2 Result Flag DF PQL ND 1 1 Result Flag DF PQL ND 1 13	4:15 PM Sample Date: 12/22/99 Result Flag DF PQL DLR ND 1 1 1 1 ND 1 13 13 Result Flag DF PQL DLR Result Flag DF PQL DLR	A:15 PM Sample Date: 12/22/99 Result Flag DF PQL DLR Units ND I I I mg/Kg Surroga Hexacosa Result Flag DF PQL DLR Units ND I 13 13 mg/Kg Surroga Hexacosa Result Flag DF PQL DLR Units ND I 1 1 mg/Kg Surroga Hexacosa Result Flag DF PQL DLR Units Surroga Surroga Surroga Surroga Surroga Surroga Surroga Surroga	Result Flag DF PQL DLR Units Extraction Date	Result Flag DF PQL DLR Units Extraction Date Date	Accordance

Comment:

Report amended 1/6/00

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

DATE 11400

INITIALS ______

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name: Project Number:

P.O. Number: 00173-195-044 Sampled By: Trevor Joseph

Certified Analytical Report

Order ID: 183	320		Lab S	ample I	D: 18320	0-014		Client Sam	ple ID: Si	ΓN21-02-5.0	
Sample Time: 4:2	2 PM		Sar	nple Dat	te: 12/22	/99		, <u>N</u>	Matrix: So	olid	· .
arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Bunker Oil		ND,		1.	13′	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
							Surroga	te	Surrogate l	Recovery	Control Limits
			•				Hexacosa	ine 	105		65 - 135
arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Diesel		ND -		1	1	1	mg/Kg	12/23/99	12/24/99	DS99121'1	EPA 8015 MOD. (Extractable)
			.,			, .	Surroga	te	Surrogate l	Recovery	Control Limits
							Hexacos	ine	105		65 - 135
arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Fuel Oil		ND		1	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
				•		,	Surroga	te .	Surrogate :	Recovery	Control Limits
• • • •		•		4		,	Hexacosa	ine	105	•	65 - 135
arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Hydraulic Oil		ND .		. 1	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
9							Surroga	ite	Surrogate	Recovery	Control Limits
,				·			Hexacosa	ine	105		65 - 135
arameter		Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
PH as Jet Fuel (JP-5)		ND		1.	1 .	1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
		• •				,	Surroga Hexacosa		Surrogate 105		Control Limits 65 - 135
F = Dilution Factor		ND:	= Not De	tected	· _ · ·	DLR	= Detection	Limit Reported	 I	PQL = Practical	Quantitation Limit
\nalysis performed by En	tech Ans	alytical Lab	is, Inc. (C	CA ELAP #	1-2346)		er.			REPLACEME	NT PAGE
			·	,			• •			DATE 114	<u> </u>
1		,		• •				•		INITIALS 벌	<u>الال</u>

fichelle L. Anderson, Laboratory Director

CA ELAP# 1-2346

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name:

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID: 18	320	Láb Sa	mple I	D: 1832	0-014		Client Sam	ple ID: Si	N21-02-5.0	
Sample Time: 4:2	22 PM .	Samı	ple Dat	te: 12/22	2/99		· ` _]	Matrix: So	lid	
Parameter	Result	Flag	DF	PQL	DIR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Kerosene	ND	•	1	1	is is	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
						. Surroga	ite	Surrogate I	Recovery	Control Limits
						Hexacosa	ine	105		65 - 135
Parameter	Result	Flag	-DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Motor Oil	ND	٠.,	1	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
					ė	Surroga	ite:	Surrogate I	Recovery	Control Limits
			12			Hexacosa	nne	105		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Stoddard Solvent	ND .		. 1	1	1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD (Extractable)
			*			Surroga Hexacosa		Surrogate I 105	Recovery	Control Limits 65 - 135

Comment:

Report amended 1/6/00

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

DATE 14 00 INITIALS STD

REPLACEMENT PAGE

Michelle L. Anderson, Laboratory Director

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name:

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

Order ID: 18320		Lab Sar	nple ID	: 1832	20-015		Client Sam	ple ID: ST	N21-02-9.0	
Sample Time: 4:25 PM		Samp	ole Date	: 12/2	2/99		Ŋ	Matrix: So	lid	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Bunker Oil	ND		1 1	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
		,		•		Surroga	te	Surrogate I	Recovery	Control Limits
•	,			•		Hexacosa	ine	93		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Diesel	ND	• .	1	. 1	1.	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
e in the second of the second	•	*				Surroga	te	Surrogate I	lecovery	Control Limits
	•					Hexacosa	ine	93		65 - 135
					·		<u> </u>			<i>:</i> .
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Fuel Oil	ND.		1	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
			,			Surroga	te	Surrogate I	Recovery	Control Limits
					•	Hexacosa	ine	93		65 - 135
· · · · · · · · · · · · · · · · · · ·							<u> </u>			<u> </u>
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Hydraulic Oil	ND		1	13	13.	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
	-					Surroga		Surrogate I	Recovery	Control Limits
						Hexacosa	ine	93	·	65 - 135 [°]
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
ΓPH as Jet Fuel (JP-5)	ND	7 .	1,	1	· 1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
,						Surroga	te	Surrogate I	lecovery.	Control Limits
	•	•	•		•	Hexacosa	ine	93	•	65 - 135
OF = Dilution Factor	NE	= Not Detec	ted	 ,	DLR =	Detection	Limit Reported	 !	PQL = Practical	Quantitation Limit
Analysis performed by Entech Ar	nalytical La	ibs, Inc. (CA	ELAP #I-	2346)				n co	AOCMENT S	MOE
								KEPI	LACEMENT F	_
)		4	,				•	DATE	14/0	$\sum_{i=1}^{n}$
		· .			* *			INIT	IALS <u>SU</u>	<u>v</u>

Michelle E. Anderson, Laboratory Director

CA ELAP# 1-2346

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Dames & Moore

8801 Folsom Boulevard, Suite 200

Sacramento, CA 95826

Attn: Sandra Dittmar

Date: 1/7/00

Date Received: 12/23/99

Project Name:

Project Number:

P.O. Number: 00173-195-044

Sampled By: Trevor Joseph

Certified Analytical Report

						xtopo	• •			
Order ID: 18320	-	Lab Sa	mple ID:	1832	0-015		Client Sam	ple ID: S	ΓN21-02-9.0	
Sample Time: 4:25 P	M	Sam	ple Date:	12/2	2/99			Matrix: So	olid	,
Parameter	Result	Flag	ĎF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Kerosene	ND		1	.1	1	mg/K.g	12/23/99	12/24/99	D\$991211	EPA 8015 MOD. (Extractable)
•						Surroga	ıtė	Surrogate	Recovery	Control Limits
1						Hexacosa	ane	93		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Motor Oil	ŅD		1	13	13	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
	•					Surroga	ite	Surrogate.	Recovery	Control Limits
			<u>.</u> .			Hexacosa	ane	93		65 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
TPH as Stoddard Solvent	ND		1	1	1	mg/Kg	12/23/99	12/24/99	DS991211	EPA 8015 MOD. (Extractable)
			•			Surroga	ite	Surrogate !	Recovery	Control Limits
						Hexacosa	ane	93		65 - 135

Comment:

Report amended 1/6/00

DF = Dilution Factor

ND = Not Detected.

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

REPLACEMENT PAGE

DATE TITLE

Michelle L. Anderson, Laboratory Director

525 Del Rey Avenue, Suite E Sunnyvale, CA 94086

QUALITY CONTROL RESULTS SUMMARY

Laboratory Control Spikes METHOD: EPA 6010

QC Batch #: SM991223 Matrix: Solid

Date Analyzed: 12/27/99 Date Digested: 12/23/99 Digestion Method: EPA 3050 Spiked Sample: Blank Spike

Units	: mg/kg									_	piked Sample: Blank Spike
ARAMETER	Method #	MB	SA	SR	SP	SP	SPD	SPD	RPD		QC LIMITS
		mg/kg	mg/kg	mg/kg	mg/kg	%R	mg/kg	%R	L	RPD	%R
- rsenic	6010	<1.0	50.	0.0	45.	90	46.	91	1.3	25.0	75-125
ead	6010	<1.0	50.	0.0	48.	95	48.	96	0.5	25.0	75-125
				•	ļ						Ĭ Į

efinition of Terms:

na: Not Analyzed in QC batch

MB: Method Blank SA: Spike Added SR: Sample Result SP: Spike Result SP (%R): Spike % Recovery

SPD: Spike Duplicate Result SPD (%R): Spike Duplicate % Recovery

QUALITY CONTROL RESULTS SUMMARY

Matrix Spike and Matrix Spike Duplicate METHOD: EPA 6010

Date Analyzed: 12/27/99

Digestion Method: EPA 3050 Sniked Sample: 18311-001

Date Digested: 12/23/99

QC Batch #: SM991223 Matrix: Solid Units: mg/kg

Method#	МВ	SA	SR	SP	SP	SPD	SPD	RPD	QC	LIMITS
i	mg/kg	mg/kg	mg/kg	mg/kg	_%R	mg/kg	%R		RPD	%R
6010	<1.0	50.	0.0	32.	65	28.	57	13.3	25.0	64-115
6010	<1.0	50.	23.7	78.	109	75.	103	4.0	25.0	64-115
	6010	mg/kg 6010 <1.0	mg/kg mg/kg 6010 <1.0 50.	mg/kg mg/kg mg/kg mg/kg 6010 <1.0	mg/kg mg/kg mg/kg mg/kg mg/kg 6010 <1.0	mg/kg mg/kg mg/kg mg/kg %R 6010 <1.0	mg/kg mg/kg mg/kg mg/kg %R mg/kg 6010 <1.0	mg/kg mg/kg mg/kg mg/kg mg/kg %R mg/kg %R 6010 <1.0	mg/kg mg/kg mg/kg mg/kg %R mg/kg %R 6010 <1.0	mg/kg mg/kg mg/kg mg/kg %R mg/kg %R RPD 6010 <1.0

Calculated Recoveries Outside of Control Limits:

Arsenic

Definition of Terms:

na: Not Analyzed in QC batch

nc: Not Calculated

MB: Method Blank

SA: Spike Added

SR: Sample Result

SP: Spike Result

SP (%R): Spike % Recovery

SPD: Spike Duplicate Result

SPD (%R): Spike Duplicate % Recovery

525 Del Rey Avenue, Suite E Sunnyvale, CA 94086

QUALITY CONTROL RESULTS SUMMARY

Laboratory Control Spikes METHOD: EPA 6010

QC Batch #: SM991224

Matrix: Solid Units: mg/kg Date Analyzed: 12/27/99 Date Digested: 12/23/99 Digestion Method: EPA 3050

Spiked Sample: Blank Spike

ARAMETER	Method #	МВ	SA	SR	SP	SP	SPD	SPD	RPD		QC LIMITS
	<u> </u>	mg/kg	mg/kg	mg/kg	mg/kg	%R	mg/kg	%R	·	RPD	%R
rsenic	6010	<1.0	50.	0.0	43.	87	44.	88	1.6	25.0	75-125
.ead	6010	<1.0	-50.	0.0	45.	90	48.	96	6.7	25.0	75-125
		• •			i						

efinition of Terms:

na: Not Analyzed in QC batch

MB: Method Blank
SA: Spike Added
SR: Sample Result
SP: Spike Result
SP (%R): Spike % Recovery

SPD: Spike Duplicate Result SPD (%R): Spike Duplicate % Recovery

QUALITY CONTROL RESULTS SUMMARY

Matrix Spike and Matrix Spike Duplicate

METHOD: EPA 6010

QC Batch #; SM991224

Matrix: Solid Units: mg/kg Date Analyzed: 12/27/99 Date Digested: 12/23/99

Digestion Method: EPA 3050

Sniked Sample: 18320-013

											cu Sample. 16320-013
PARAMETER		MB mg/kg	SA mg/kg	SR mg/kg	SP mg/kg	SP %R	SPD mg/kg	SPD %R	RPD	RPD	QC LIMITS %R
Arsenic	6010	<1.0	50.	55.2	130.	149	125.	139	4.0	25.0	64-115
Lead	6010	<1.0	50.	8.7	63.	108	64.	110	1.4	25.0	64-115

Calculated Recoveries Outside of Control Limits:

Arsenic

Definition of Terms:

na: Not Analyzed in QC batch

nc: Not Calculated MB: Method Blank SA: Spike Added

SR: Sample Result SP: Spike Result

SP (%R): Spike % Recovery

SPD: Spike Duplicate Result

SPD (%R): Spike Duplicate % Recovery

525 Del Rey Avenue, Suite E Sunnyvale, CA 94086

QUALITY CONTROL RESULTS SUMMARY

Laboratory Control Spikes

QC Batch #: DS991211

Matrix: Solid

Date analyzed:

12/23/99

Date extracted:

12/23/99

Units:	mg/Kg							Quality Cont	roi Sample:	<u> </u>	Blank Spike
PARAMETER	Method #	MB mg/Kg	SA mg/Kg	SR mg/Kg	SP mg/Kg	SP %R	SPD mg/Kg	SPD %R	RPD	RPD	QC LIMITS %R
Diesel	8015M	<1.0	25	ND	20 .	80	20	81	0.8	30	35-126

Hexocosane

93%

91%

92%

65-135

Definition of Terms:

MB: Method Blank

na: Not Analyzed in QC batch

SA: Spike Added SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result

SP (%R): Spike % Recovery

SPD: Spike Duplicate Result

SPD (%R): Spike Duplicate % Recovery

NC: Not Calculated

525 Del Rey Avenue, Suite E Sunnyvale, CA 94086

QUALITY CONTROL RESULTS SUMMARY

Matrix Spike/Matrix Spike Duplicate

QC Batch #: DS991211

Date analyzed:

12/23/99

Matrix: Solid

Date extracted:

12/23/99

Units: mg/Kg

Quality Control Sample:

18301-002

PARAMETER	Method #	MB mg/Kg	SA mg/Kg	SR mg/Kg	SP mg/Kg	SP %R	SPD mg/Kg	SPD %R	RPD	RPD	QC LIMITS %R
Diesel	8015M	<1.0	25	0.0	18	74	17	68	7.9	30	35-126

Hexocosane

171%

79%

79%

65-135

Calculated Recovery Outside of Control Limits:

High surrogate recovery due to the surrogate being added to the sample twice.

Definition of Terms:

MB: Method Blank

na: Not Analyzed in QC batch

SA: Spike Added

SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result

SP (%R): Spike % Recovery

SPD: Spike Duplicate Result

SPD (%R): Spike Duplicate % Recovery

NC: Not Calculated

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • Telephone: (408) 735-1550 (800) 287-1799 • Fax: (408) 735-1554

Chain of Custody/Analysis Work Order

Project ID:

LAB USE ONLY

Client: Dames & Moore

Address: 8801 Folsom Bldd. STE 200	Purchase Orde	I#: 50173-	95-044		
SACRAMENTO, CA 95827 SANDRA Contact: WASH WASHERT Drimpair	Sampler/Company: Trevor Joseph/Dame	s , Moore 916-38	ne #: 37-9800	Samples arriv	ed chilled and intact:
Telephone #: (916) 387- 8800	Special Instructions/Com	nments	+ +	Notes:	
Date Received:	Analytical Methods with Dames	Moore			
Turn Around: ZYW		1 *			
	<u> </u>			<u> </u>	
Sample Information	on AUSI	j		Requested A	nalysis
10320			_ 11		
Lab # Sample ID Grab/ Date Collecte		Sample & Container		Total Lead Total Arsenic	
001 STNC-01-10 GAS SOIL 12/22	1- A	cetate sceeve	X	XX	
00Z 5TXCC 01-30 91 1 91		!	7	na	
003 STAKE-01-90	1225				
004 5000-07-1.0	1305				
005 STN02-02-30	1315				
CO6 SINCC-02-7.0	1355				
	1400	1			
ON I	1410		 	7 17 1	
Religibles: Section Rec	eived By:		Date	22/95	Time (807)
Reimq. By:	eived By:		Date		Time
Reling/ By:	ewed By		Date	128/95	Time // 30

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • Telephone: (408) 735-1550 (800) 287-1799 • Fax: (408) 735-1554

Chain of Custody/Analysis Work Order

Project ID: UP-SAC Phase IA RA

LAB USE ONLY

Client: Dames i Moore

Telej	Address: 880/ SAc Contact: WWW. phone #: (9) ecceived: Around:	RAMENTO UNIAN WANTA 16) 387-	CA 95 CAMPARIA 5	B27 MODEA DITTMAR	ampler/Comp resor Tosep pecial Instruc	any: / Dan tions/C metho	omments ds es pe	hone #: e 87-88	00	No	mples arri Yes ites:	ived chilled an	nd intact:	-
-	 		Sample I	nformation	hu	51			T	R	equested	Analysis	* * .	
Lab#	Sample ID	Grab/ Composite	Matrix	Date Collected	Time Collected	Pres.	Sample Çontainer	HdT	#	Total Lead	A se A		·	
009	STNCC-03-92	GEAB	Soil	12/22/99	1445		ACETAIL SLEEVE	X		又	X			
0.00	STN21-0:30	0 9	7	1	1515	al	1	1		1	1		1.	
011	5TM21-01-3.0				1530						í			
	STN 21-01-9.	1 1			1555									
	57421-02-1.	1			1615									_
	STN21-02-5				(622									_
Acc	STN 21-02-9.	1		J	1625	4	V	1		1	8			_
		e , e=							<u> </u>	1				_
Reling. By:	w I G	A	· l · e · · · · · · · · · · · · · · · ·	Received	IBY: FED EX		da reservir e percer de la c elebración de la celebración de la c		Date	2/22	199	Time 187	<u></u>	_
Relinq By:	Y			Received	I By:			, , , , , , , , , , , , , , , , , , , 	Date		- 	Time		
Reling/By:				Received					Date	1/23	199	Time	30:	_

Client: **Dave Wheeldon**

Dames & Moore

8801 Folsom Bvd., Ste. 200 Sacramento, CA 95826

Project:

UP Sacramento

Project Number:

00173-195-044

Collected by:

Trevor Joseph

Lab Number:	18687-1
Collected:	12/22/99
Received:	12/23/99
Matrix:	Soil

Sample Description:

STNCC-01-1.0

Analyzed:

12/24/99

Method:

EPA 8270 (SIM)

CONSTITUENT	PQL*	RESULT**
	mg/kg	mg/kg
POLYNUCLEAR AROMATIC HYDROCARBONS		
Acenaphthene	0.005	ND
Acenaphthylene	0.005	ND
Anthracene	0.005	ND
Benz (a) anthracene	0.005	ND
Senzo (b) fluoranthene	0.005	ND
3enzo (k) fluoranthene	0.005	ND `
3enzo (a) pyrene	0.005	ND
Benzo (ghi) perylene	0.005	ND
Chrysene	0.005	. ND
Dibenzo (a,h) anthracene	0.005	ND
Fluoranthene	0.005	ND
Fluorene	0.005	ND
ndeno (1,2,3-cd) pyrene	0.005	ND
Naphthalene	0.005	ND
Phenanthrene	0.005	ND
⁵ yrene	0.005	ND
Percent Surrogate Recovery	• • • •	80

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 12/23/99.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

VISD #5 18687-1n.xls JMM/rl/dz/rb

Submitted by,

ZymaX envirotechnology, inc.

John MacMurphey **Laboratory Director**

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Client: Dave Wheeldon

Dames & Moore

8801 Folsom Bvd., Ste. 200

Sacramento, CA 95826

Project:

UP Sacramento

Project Number:

00173-195-044

Collected by:

Trevor Joseph

 Lab Number:
 18687-2

 Collected:
 12/22/99

 Received:
 12/23/99

 Matrix:
 Soil

Sample Description:

STNCC-01-3.0

Analyzed:

12/24/99

Method:

EPA 8270 (SIM)

<u> </u>		4			
CONSTITUENT			PQL*		RESULT**
ř ·	. •	and the second	mg/kg	•	mg/kg

POLYNUCLEAR AROMATIC HYDROCARBONS

Percent Surrogate Recovery	•		;	74
Pyrene	y. 4		0.005	ND
Phenanthrene			0.005	ND
Naphthalene			0.005	ND .
Indeno (1.2.3-cd) pyréné		*	0.005	ND
Fluoranthene Fluorene	r	1	0.005	ND
Fluoranthene			0.005	ND
Dibenzo (a,h) anthracene			0.005	ND
Chrysene	** ₄		0.005	ND
Benzo (ghi) perylene			0.005	ND
Benzo (a) pyrene	•	1	0.005	ND
Benzo (k) fluoranthene	•		0.005	, ND
Benzo (b) fluoranthene	· · · · · · · · · · · · · · · · · · ·		0.005	ND
Benz (a) anthracene			0.005	ND
Acenaphthylene Anthracene			0.005	ND
Acenaphthylene	4		0.005	ND
Acenaphthene			0.005	ND

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 12/23/99.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

Submitted by,

ZymaX envirotechnology, inc.

MSD #5 18687-2n.xls JMM/rl/dz/rb

John MacMurphey Laboratory Director

^{*}PQL - Practical Quantitation Limit

^{*} Results listed as ND would have been reported if present at or above the listed PQL.

Client: Dave Wheeldon Dames & Moore

8801 Folsom Bvd., Ste. 200 Sacramento, CA 95826

Project:

UP Sacramento

Project Number:

00173-195-044

Collected by:

Trevor Joseph

Lab Number:

18687-3

Collected:

12/22/99

Received:

12/23/99

Matrix:

Soil

Sample Description:

STNCC-01-9.0

Analyzed:

12/24/99

Method:

EPA 8270 (SIM)

CONSTITUENT	PQL*	RESULT**
	mg/kg	mg/kg

POLYNUCIFAR AROMATIC HYDROCARBONS

POLYNUCLEAR AROMATIC HYDROCARBONS		
Acenaphthene	0.005	ND
Acenaphthylene	0.005	ND
Anthracene	0.005	ND
Benz (a) anthracene	0.005	ND
Benzo (b) fluoranthene	0.005	ND
Benzo (k) fluoranthene	0.005	ND
Benzo (a) pyrene	0.005	ND
Benzo (ghi) perylene	0.005	ND,
Chrysene	0.005	. ND
Dibenzo (a,h) anthracene	0.005	ND
Fluoranthene	0.005	ND
Fluorene	0.005	ND
Indeno (1,2,3-cd) pyréne	0.005	ND:
Naphthalene	0.005	ND
Phenanthrene	0.005	ND
Pyrene	0.005	ND
Percent Surrogate Recovery		73

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 12/23/99.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

Submitted by,

ZymaX envirotechnology, inc.

MSD #5 18687-3n.xls JMM/rl/dz/rb

John MacMurphey Laboratory Director

71 Zaca Lane

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Client: **Dave Wheeldon**

Dames & Moore

8801 Folsom Bvd., Ste. 200

Sacramento, CA 95826

Project:

UP Sacramento

Project Number:

00173-195-044

Collected by:

Trevor Joseph

Received: Matrix:

Lab Number:

Collected:

18687-4

12/22/99

12/23/99

Sample Description:

STNCC-02-1.0

Analyzed:

12/24/99

Method:

EPA 8270 (SIM)

CONSTITUENT	• •	•	PQL*	:	RESULT**
<u> </u>		<u>, , , , , , , , , , , , , , , , , , , </u>	mg/kg		mg/kg
POLYNUCLEAR ARON	MATIC HYDRO	CARBONS	; 		

Acenaphthene		0.005	ND
Acenaphthylene	•	0.005	ND
Anthracene		0.005	ND
Benz (a) anthracene	•	0.005	ND
Benzo (b) fluoranthene		0.005	ND
Benzo (k) fluoranthene		0.005	ND
Benzo (a) pyrene	•	0.005	ND
Benzo (ghi) perylene	1	0.005	ND
Chrysene		0.005	ND
Dibenzo (a,h) anthracene	•	0.005	ND
Fluoranthene	•	0.005	ND
Fluorene		0.005	ND
Indeno (1,2,3-cd) pyrene	<i>J</i>	0.005	ND
Naphthalene	t	0.005	ND
Phenanthrene		0.005	' ND
Pyrene		0.005	ND
Percent Surrogate Recovery	•		72

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 12/23/99.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

Submitted by,

ZymaX envirotechnology, inc.

John MacMurphey

Laboratory Director

MSD #5 18687-4n.xls JMM/rl/dz/rb

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Client: Dave Wheeldon
Dames & Moore

8801 Folsom Bvd., Ste. 200

Sacramento, CA 95826

Project:

UP Sacramento

Project Number:

00173-195-044

Collected by:

Trevor Joseph

Lab Number:

18687-5

Collected:

12/22/99

Received:

12/23/99

Matrix:

Soil

Sample Description:

STNCC-02-3.0

Analyzed:

12/24/99

Method:

EPA 8270 (SIM)

CONSTITUENT	PQL*	RESULT**
	mg/kg	mg/kg
POLYNUCLEAR AROMATIC HYDROCARBONS		
Acenaphthene	0.005	ND
Acenaphthylene	0.005	ND
Anthracene	0.005	ND
Benz (a) anthracene	0.005	ND
Benzo (b) fluoranthene	0.005	ND
Benzo (k) fluoranthene	0.005	ND
Benzo (a) pyrene	0.005	ND
Benzo (ghi) perylene	0.005	ND
Chrysene	0.005	ND
Dibenzo (a,h) anthracene	0.005	ND
Fluoranthene	0.005	ND
Fluorene	0.005	ND .
Indeno (1,2,3-cd) pyrene	0.005	ND
Naphthalene	0.005	ND
Phenanthrene	0.005	ND
Pyrene	0.005	ND
Percent Surrogate Recovery		67

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 12/23/99.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

Submitted by,

ZymaX envirotechnology, inc.

MSD #5 18687-5n.xls JMM/rl/dz/rb Maran Kashi Kw John MacMurphey Laboratory Director

> 71 Zaca Lane San keis Obispa CA 93401

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Dave Wheeldon

Dames & Moore

8801 Folsom Bvd., Ste. 200

Sacramento, CA 95826

Project:

UP Sacramento

Project Number:

00173-195-044

Collected by:

Trevor Joseph

Lab Number: Collected:

18687-6

Received:

12/22/99 12/23/99

Matrix:

Sample Description:

STNCC-02-7.0

Analyzed:

12/24/99

Method:

EPA 8270 (SIM)

	the state of the s				
CONSTITUENT			PQL*	,	RESULT**
	•	;	mg/kg		mg/kg

POLYNUCLEAR AROMATIC HYDROCARBONS

Percent Surrogate Recovery	1				84
Pyrene	ı		0.005	•	ND
Phenanthrene		•	0.005		ND
Naphthalene	*	•	0.005	Ļ	ND
Indeno (1,2,3-cd) pyrene			0.005		ND
Fluorene	4		0.005	• • • • • • • • • • • • • • • • • • •	ND
Fluoranthene			0.005		ND
Dibenzo (a,h) anthracene		1	0.005		ND
Chrysene			0.005		ND
Benzo (ghi) perylene		1	0.005		ND
Benzo (a) pyrene			0.005		ND
Benzo (k) fluoranthene		•	0.005		ND
Benzo (b) fluoranthene		•	0.005		ND
Benz (a) anthracene			0.005		ND
Anthracene			0.005	•	ND
Acenaphthylene		•	0.005		ND
Acenaphthene			0.005		ND
A 1.4			0.005		

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 12/23/99.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

Submitted by,

ZymaX envirotechnology, inc.

John MacMurphey **Laboratory Director**

MSD #5 18687-6n.xls JMM/rl/dz/rb

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Client: Dave Wheeldon Dames & Moore

8801 Folsom Bvd., Ste. 200

Sacramento, CA 95826

Project:

UP Sacramento

Project Number:

00173-195-044

Collected by:

Trevor Joseph

Lab Number:

18687-7

Soil

Collected:

12/22/99

Received: Matrix: 12/23/99

Sample Description:

STNCC-03-1.0

Analyzed:

12/24/99

Method:

EPA 8270 (SIM)

CONSTITUENT	PQL* mg/kg	RESULT** mg/kg
POLYNUCLEAR AROMATIC HYDROCARBONS	g/kg	
•	0.005	
Acenaphthene Acenaphthylene	0.005 0.005	ND ND
Anthracene	0.005	0.016
Benz (a) anthracene	0.005	0.013
Benzo (b) fluorenthene	0.005	0.045
Benzo (k) fluoranthene	0.005	0.015
Benzo (a) pyrene	0.005	0.014
Benzo (ghi) perylene	0.005	0.018
Chrysene	0.005	0.023
Dibenzo (a,h) anthracene	0.005	ND
Fluoranthene	0.005	0.040
Fluorene	0.005	, ND
Indeno (1,2,3-cd) pyrene	0.005	0.018
Naphthalene	0.005	ND
Phenanthrene	0.005	0.013
Pyrene	0.005	0.033
Percent Surrogate Recovery.		71
•		

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 12/23/99.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

Submitted by,

ZymaX envirotechnology, inc.

MSD #5 18687-7n.xls JMM/rl/dz/rb

John MacMurphey Laboratory Director

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Dave Wheeldon

Dames & Moore

8801 Folsom Bvd., Ste. 200 Sacramento, CA 95826

Project:

Fluorene

Pyrene

Naphthalene

Phenanthrene

Indeno (1,2,3-cd) pyrene

Percent Surrogate Recovery

UP Sacramento

Project Number:

00173-195-044

Lab Number: Collected:

18687-8 12/22/99

Received:

12/23/99

Matrix: Soil

Sample Description:

0.005

0.005

0.005

0.005

0.005

STNCC-03-3.0

Analyzed:

12/24/99

Collected by: Trevor Joseph	Method:	EPA 8270 (SIM)	
CONSTITUENT	PQL* mg/kg		RESULT** mg/kg
POLYNUCLEAR AROMATIC HYDROCARBONS			
Acenaphthene	0.005	•	ND
Acenaphthylene	0.005		ND
Anthracene	0.005		ND
Benz (a) anthracene	0.005	·	ND
Benzo (b) fluoranthene	0.005	7	ND
Benzo (k) fluoranthene	0.005		ND
Benzo (a) pyrene	0.005		ND
Benzo (ghi) perylene	0.005		ND
Chrysene	0.005		ND ·
Dibenzo (a,h) anthracene	0.005	'	ND
Fluoranthene	0.005		ND

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 12/23/99.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

Submitted by,

ZymaX envirotechnology, inc.

MSD #5 18687-8n.xls JMM/rl/dz/rb

John MacMurphey **Laboratory Director** ND

ND

ND

ND

ND

87

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Client: Dave Wheeldon Dames & Moore

8801 Folsom Bvd., Ste. 200

Sacramento, CA 95826

Project:

UP Sacramento

Project Number:

00173-195-044

Collected by:

Trevor Joseph

	·
Lab Number:	18687-9
Collected:	12/22/99
Received:	12/23/99
Matrix:	Soil

Sample Description:

STNCC-03-9.0

Analyzed:

12/24/99

Method

EPA 8270 (SIM)

Collected by: Trevor Joseph	Method:	EPA 8270 (SIM)
CONSTITUENT	PQL*	RESULT**
	mg/kg	mg/kg
POLYNUCLEAR AROMATIC HYDROCARBONS		
Acenaphthene	0.005	ND
Acenaphthylene	0.005	ND
Anthracene	0.005	ND
Benz (a) anthracene	0.005	ND ·
Benzo (b) fluoranthene	0.005	ND
Benzo (k) fluoranthene	0.005	NĐ
Benzo (a) pyrene	0.005	ND
Benzo (ghi) perylene	0.005	ND
Chrysene	0.005	ND
Dibenzo (a,h) anthracene	0.005	ND
-luoranthene	0.005	ND
Fluorene	0.005	. ND
ndeno (1,2,3-cd) pyrene	0.005	NÐ
Naphthalene-	0.005	ND .
Phenanthrene	0.005	ND
Pyrene	0.005	ND
Percent Surrogate Recovery		79

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 12/23/99.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

Submitted by,

ZymaX envirotechnology, inc.

MSD #5 18687-9n.xls JMM/rl/dz/rb

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Client: Dave Wheeldon

Dames & Moore

8801 Folsom Bvd., Ste. 200

Sacramento, CA 95826

Project:

UP Sacramento

Project Number:

00173-195-044

Collected by:

Trevor Joseph

Met

 Lab Number:
 18687-10

 Collected:
 12/22/99

 Received:
 12/23/99

 Matrix:
 Soil

Sample Description:

STN21-01-1.0

Analyzed:

12/24/99

Method: EPA 8270 (SIM)

CONSTITUENT		PQL*	RESULT**
	· · · · · · · · · · · · · · · · · · ·	mg/kg	mg/kg

POLYNUCLEAR AROMATIC HYDROCARBONS

· · · · · · · · · · · · · · · · · · ·		
Acenaphthene	0.005	ND
Acenaphthylene	0.005	ND
Anthracene	0.005	ND
Benz (a) anthracene	0.005	ND
Benzo (b) fluoranthene	0.005	ND
Benzo (k) fluoranthene	0.005	, ND
Benzo (a) pyrene	0.005	ND
Benzo (ghi) perylene	0.005	ND
Chrysene	0.005	ND
Dibenzo (a,h) anthracene	0.005	ND
Fluoranthene	0.005	ND
Fluorene	0.005	ND
Indeno (1,2,3-cd) pyrene	0.005	ND
Naphthalene	0.005	ND
Phenanthrene	0.005	ND .
Pyrene	0.005	ND
Percent Surrogate Recovery		69

ZyınaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 12/23/99.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

Submitted by,

ZymaX envirotechnology, inc.

MSD #5 1868710n.xls JMM/rl/dz/rb

John MacMurphey

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Client: Dave Wheeldon
Dames & Moore

8801 Folsom Bvd., Ste. 200 Sacramento, CA 95826

Project:

UP Sacramento

Project Number:

00173-195-044

Collected by:

Trevor Joseph

Lab Number:	18687-11	_
Collected:	12/22/99	
Received:	12/23/99	
Matrix:	Soil	

Sample Description:

STN21-01-3.0

Analyzed:

12/24/99

Method:

EPA 8270 (SIM)

Collected by: Trevor Joseph	ivietnoa:	EPA 8270 (SIVI)
CONSTITUENT	PQL* mg/kg	RESULT** mg/kg
	ilig/kg	під/ку
POLYNUCLEAR AROMATIC HYDROCARBONS		
Acenaphthene	0.005	ND
Acenaphthylene	0.005	N D
Anthracene	0.005	ND
Benz (a) anthracene	0.005	ND
Benzo (b) fluoranthene	0.005	0.005
Benzo (k) fluoranthene	0.005	ND
Benzo (a) pyrene	0.005	ND
Benzo (ghi) perylene	0.005	0.009
Chrysene	0.005	NÐ
Dibenzo (a,h) anthracene	0.005	ND
Fluoranthene	0.005	ND
Fluorene	0.005	ND
Indeno (1,2,3-cd) pyrene	0.005	0.005
Naphthalene	0.005	ND
Phenanthrene	0.005	ND
Pyrene	0.005	ND
Percent Surrogate Recovery		55

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 12/23/99.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

Submitted by,

ZymaX envirotechnology, inc.

MSD #5 1868711n.xls JMM/rl/dz/rb

John MacMurphey Laboratory Director

71 Zaca Lane

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Client: Dave Wheeldon

Dames & Moore

8801 Folsom Bvd., Ste. 200

Sacramento, CA 95826

Project:

UP Sacramento

Project Number:

00173-195-044

Collected by:

Trevor Joseph

Lab Number:

18687-12

Collected:

12/22/99

Received:

12/23/99

Matrix:

Soil

Sample Description:

STN21-01-9.0

Analyzed:

12/24/99

Method:

EPA 8270 (SIM)

	the state of the s					
CONSTITUENT	•	ŀ	-	•	PQL*	RESULT * *
					mg/kg	mg/kg

POLYNUCLEAR AROMATIC HYDROCARBONS

		•
naphthene	0.005	NĎ
naphthylene	0.005	ND
hracene	0.005	ND
rz (a) anthracene	0.005	ND
rzo (b) fluoranthene	0.005	ND
rzo (k) fluoranthene	0.005	· ND
rzo (a) pyrene	0.005	ND
rzo (ghi) perylene	0.005	ND
lysene	0.005	ND
enzo (a,h) anthracene	0.005	ND
ranthene	0.005	. ND
prene	0.005	ND
ieno (1,2,3-cd) pyrene	0.005	ND
hthalene	0.005	ND
nanthrene	0.005	ND
rene	0.005	ND
rcent Surrogate Recovery		. 71
	conaphthene conaphthylene conaphtylene conaphthylene conaphtylene conaphthylene conaph	cenaphthylene 0.005 in hracene 0.005 in z (a) anthracene 0.005 in zo (b) fluoranthene 0.005 in zo (k) fluoranthene 0.005 in zo (a) pyrene 0.005 in zo (ghi) perylene 0.005 in ysene 0.005 in pranthene 0.005 in rene 0.005 deno (1,2,3-cd) pyrene 0.005 in hthalene 0.005 in anthrene 0.005 rene 0.005

ZyrnaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 12/23/99.

No e: Analyzed in the Selected Ion Monitoring (SIM) mode.

Submitted by,

ZymaX envirotechnology, inc.

MSD #5 1868712n.xls JMM/rl/dz/rb

^{*}POL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

18687-13

12/22/99

12/23/99

Soil

Client: Dave Wheeldon

Dames & Moore

8801 Folsom Bvd., Ste. 200 Sacramento, CA 95826

Project:

UP Sacramento

Project Number:

Collected by:

00173-195-044

Trevor Joseph

Matrix:
Sample Description:

STN21-02-1.0

Analyzed:

Lab Number:

Collected:

Received:

12/24/99 .

Method:

EPA 8270 (SIM)

CONSTITUENT	PQL*	RESULT**
	mg/kg	mg/kg

POLYNUCLEAR AROMATIC HYDROCARBONS

		The state of the s
Acenaphthene	0.005	ND
Acenaphthylene	0.005	ND
Anthracene	0.005	0.007
Benz (a) anthracene	0.005	0.022
Benzo (b) fluoranthene	0.005	, 0.021
Benzo (k) fluoranthene	0.005	0.009
Benzo (a) pyrene	0.005	0.016
Benzo (ghi) perylene	0.005	0.010
Chrysene	0.005	0.018
Dibenzo (a,h) anthracene	0.005	ND
Fluoranthene	0.005	0.037
Fluorene	0.005	ND ·
Indeno (1,2,3-cd) pyrene	0.005	0.010
Naphthalene	0.005	ND
Phenanthrene	0.005	0.029
Pyrene	0.005	0.028
Percent Surrogate Recovery		64

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 12/23/99.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

Submitted by,

ZymaX envirotechnology, inc.

MSD #5 1868713n.xls JMM/rl/dz/rb

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Client: Dave Wheeldon

Dames & Moore

8801 Folsom Bvd., Ste. 200 Sacramento, CA 95826

Project:

UP Sacramento

Project Number:

00173-195-044

Collected by:

Trevor Joseph

Lab Number:

18687-14

Collected:

12/22/99

Received:

12/23/99

Matrix: Soil

Sample Description:

STN21-02-5.0

Analyzed:

12/24/99

Method:

EPA 8270 (SIM)

the state of the s		·	· · · · · · · · · · · · · · · · · · ·
CONSTITUENT		PQL*	RESULT**
	•	 mg/kg	mg/kg

POLYNUCLEAR AROMATIC HYDROCARBONS

Assasshthana	0.005	ND
Acenaphthene	0.005	ND
Acenaphthylene	0.005	ND
Anthracene	0.005	ND
Benz (a) anthracene	0.005	ND
Benzo (b) fluoranthene	0.005	ND
Benzo (k) fluoranthene	0.005	ND
Benzo (a) pyrene	0,005	ND
Benzo (ghi) perylene	0.005	ND
Chrysene	0.005	ND
Dibenzo (a,h) anthracene	0.005	ND
Fluoranthene	0.005	ND
Fluorene	0.005	ND
Indeno (1,2,3-cd) pyrene	0.005	ND
Naphthalene	0.005	ND
Phenanthrene	0.005	ND
Pyrene	0.005	ND
Boroont Currogata Pagavary		67
Percent Surrogate Recovery	•	67

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 12/23/99.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

Submitted by,

ZymaX envirotechnology, inc.

MSD #5 1868714n.xls JMM/rl/dz/rb

John MacMurphey

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Client: Dave Wheeldon
Dames & Moore

Dames & Moore

8801 Folsom Bvd., Ste. 200 Sacramento, CA 95826

Project:

UP Sacramento

Project Number:

00173-195-044

Collected by:

Trevor Joseph

Lab Number:

18687-15

Collected:

12/22/99

Received: Matrix: 12/23/99 Soil

Sample Description:

STN21-02-9.0

Analyzed:

12/24/99

Method:

EPA 8270 (SIM)

CONSTITUENT	PQL*	RESULT**
	_mg/kg	mg/kg
POLYNUCLEAR AROMATIC HYDROCARBONS		

POLYNUCLEAR AROMATIC HYDROCARBONS		
Acenaphthene	0.005	ND
Acenaphthylene	0.005	ND
Anthracene	0.005	ND
Benz (a) anthracene	0.005	ND
Benzo (b) fluoranthene	0.005	ND
Benzo (k) fluoranthene	0.005	ND
Benzo (a) pyrene	0.005	ND
Benzo (ghi) perylene	0.005	ND -
Chrysene	0.005	ND
Dibenzo (a,h) anthracene	0.005	ND.
Fluoranthene	0.005	ND
Fluorene	0.005	, ND
Indeno (1,2,3-cd) pyrene	0.005	ND
Naphthalene	0.005	ND
Phenanthrene	0.005	ND
Pyrene	0.005	ND
Percent Surrogate Recovery		60

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 12/23/99.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

Submitted by,

ZymaX envirotechnology, inc.

MSD #5 1868715n.xls JMM/rl/dz/rb

^{*}POL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Client:

ZymaX envirotechnology, inc. 71 Zaca Lane, Suite 110 San Luis Obispo, CA 93401

Project:

Project Number: Collected by:

Lab Number:

LCS SS2323

Collected:

Received:

Matrix:

Soil

Sample Description:

Laboratory Control Spike

Analyzed:

12/23/99

Method: EPA 8270 (SIM)

CONSTITUENT	Amount Spiked	Amount Recovered	Percent
	mg/kg	mg/kg	Recovery
	t_{i}	:	
POLYNUCLEAR AROMATIC	HYDROCARRONS	•	

Benzo (a) pyrene	0.080	0.055	69
Benzo (b) fluoranthene	0.080	0.053	66
Naphthalene	0.080	0.050	63
Phenanthrene	0.080	0.074	93
Fluorene	0.080	0.056	70
Percent Surrogate Recovery			77

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 12/23/99.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

SS2323 MSD #5 SS2323qn.xls JMM/sw/dz

Submitted by,

ZymaX envirotechnology, inc.

John MacMurphey

QUALITY ASSURANCE REPORT SPIKE DUPLICATE RESULTS

Client:

ZymaX envirotechnology, inc. 71 Zaca Lane, Suite 110 San Luis Obispo, CA 93401

Project:

Project Number: Collected by:

Lab Number:	LCSD SS2323
Collected:	
Received:	
Matrix:	Soil

Sample Description:

Laboratory Control Spike Duplicate

Analyzed:

12/23/99

Method: EPA 8270 (SIM)

CONSTITUENT	Amount Spiked mg/kg	Amount Recovered mg/kg	Percent Recovery	Relative Percent Difference*		
POLYMUCI FAR AROMATIC HIVE						
POLYNUCLEAR AROMATIC HY	DROCHIBON2					
Benzo (a) pyrene	0.080	0.054	68	. 2		
Benzo (b) fluoranthene	0.080	0.057	71	7 .		
Naphthalene	0.080	0.048	60	4		
Phenanthrene	0.080	0.069	86	7		
Fluorene	0.080	0.057	71	2		
Percent Surrogate Recovery			76			

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 12/23/99.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

SS2323 MSD #5 SS2323qn.xls JMM/sw/dz Submitted by,

ZymaX envirotechnology, inc.

John MacMurphey Laboratory Director

Additional pa

^{*}Relative Percent Difference of the spike and spike duplicate

Client:

Project:

ZymaX envirotechnology, inc., 71 Zaca Lane, Suite 110 San Luis Obispo, CA 93401

Lab Number:

BLK SS2323

Collected:

Received:

Matrix:

Soil

Sample Description:

Method Blank

Project Number: Collected by:		Analyzed: Method:	12/23/99 EPA 8270 (SIM)	
CONSTITUENT		PQL* mg/kg		RESULT** mg/kg
POLYNUCLEAR AROMATIC HYD	ROCARBONS			
Acenaphthene		0.005	•	ND
Acenaphthylene	i .	0.005		ND
Anthracene		0.005		ND
Benz (a) anthracene	1	0.005		ND
Benzo (b) fluoranthene	[``	0.005		ND.
Benzo (k) fluoranthene	ji j	0.005	•	ND
Benzo (a) pyrene	'	0.005		ND
Benzo (ghi) perylene		0.005	•	ND
Chrysene		0.005	•	ND
Dibenzo (a,h) anthracene	r a	0.005	•	ND
Fluoranthene		0.005		ND
Fluorene	¥	0.005		ND
Indeno (1,2,3-cd) pyrene	0 .	0.005		ND
Naphthalene	.8	0.005	• .	ND
Phenanthrene		0.005		ND
Pyrene		0.005		ND
Percent Surrogate Recovery	и •			65

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 12/23/99.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

SS2323 MSD #5 \$\$2323bn.xls

JMM/sw/dz

Submitted by,

ZymaX envirotechnology, inc.

John MacMurphey

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

hain of ustody Record

prone 805.544.4696 fex 805.544.8226

Zymax 71 Zaca Lane San Luis phispo, CA

A-4124			•												,	<u> 9340</u>
ient				Project Manager						Date			Chain Of	Custody		•
Dames (Moore				Telephone Numb	. Whi	eeldon	n	•		12-22	99				47	2158
Idress	٠.			1			per	.		Lab Number				-		1
tdress 8801 Folsom Blud. State	swite	200		916-38 Site Contact	37-886	<u>ت</u> و و		,					Page		_ of	
ty State				1			<u>-</u>						Ana	alysis	:	
Sacramento CA	99	5826	<u></u> و	Treso Carrier/Waybill No	r 70	seph					3 c					
				Carrier/Waybill No	umber.						27		1 1			
U.P.S.a. ⊆ ontract/Purchase Order/Quote No.				<u> </u>							<u>a</u>	1				
"											\ <u>\</u>	1 1.		1 1		
00173-195-044				<u> </u>] [
Sample I.D. No. and Description	D	Pate	Time	Sample Type	Total Volume	Conta Type	iners No.	Preservative	Condition	on Receipt	Q.		•	Lab#	2	
TNCC-01-1.0	121	22/90	1140	Sou		ACETATE SLEEN	ir.		cold:	Just .	X		l .	1868	7-1	
INCC - 01 - 3.0		1	1150	<u>a</u> 1		1	a	a1_			a				-2	
TNCC - 01-9.0			1225												-3	
TNCC-02-1.0			1705												-4	
D 2-50-30AT			1715												-5	
TNCC-07-70			1735			11									6	
TNCC-03-1-0			1400			1/								igsqcup	 7	_
TACC-03-30			1410			11								igsquare	-8	
TACC-03-90			1445		<u> </u>			<u> </u>			Ш_	<u> </u>	<u> </u>	<u> </u>	-9	
TNI21-01-1.0	<u> </u>		1515			<u> - </u>	_		1				 	<u> </u>	10	
7N31-01-30	—		1530			 	-	l						igwdown	1//	
JN21-01-9.0 JN21-07-1.0	_		1555		· · · · · ·	1-1			1			┦-}-	1	igspace	-12	- -
STN 21-07 - 1.0		 _	1615		- 4		-11-				H—		1		-/3	
57W21-02-3-05:0		-	1672	-	 	11-	-11		\ \ <u>\</u>		_	 -	 	 	14	
37N121-02-90		<u>d</u>	1675			 \	_ - - -	a _	- V		7	- -			15	
ecial Instructions	<u></u>								<u> </u>		L				<u>Ll.</u>	
					,	•										
Standard Level Z issible Hazard Identification	Del	س و دهد	16	as agre	ement	Samuli	e Disposa	.,		_			·			
	in Irritant		Poison B			1 '	Return To			sai By Lab	ĊΠ.	Archive Fo		14	46	
m Around Time Required	in irritant			GC Level	nown		Specific		Uispo	sai By Lao		Archive Fo	or	Mon	rns :	
			.			1.0,000	· opcomo	(ороспу)							•	
Normal Rush Relinguished By		•		Date .	Time	1. Rec	eived Bv	.	,				Date		. Time	
(the 9 6				12/22/99	1800		111	Mun		•			/2/	23/49) []	30
Relinquished By]	Date	Time	2. Reći	eived/By /						Date		Time	-
Relinquished By				Date	Time	3. Rec	eived By				•		Date		Time	
ymments								· .								

Client: Jim Brake

Dames & Moore

8801 Folsom Blvd., Ste. 200 ¹

Sacramento, CA 95826

Project:

UPSAC

Project Number:

00173-195-044

Collected by:

CEF

Lab Number:

18743-1

Soil

Collected:

01/03/00

Received:

Matrix:

01/04/00

Sample Description:

STNCC-04-1.0

Analyzed:

01/04/00

Method:

EPA 8270 (SIM)

CONSTITUENT		 PQL*	RESULT**
	<u></u>	mg/kg	mg/kg

POLYNUCLEAR AROMATIC HYDROCARBONS

Acenaphthene			0.005		ND
Acenaphthylene			0.005	w.	ND
Anthracene			0.005	i i	ND
Benz (a) anthracene		•	0.005		ND
Benzo (b) fluoranthene			0.005		ND
Benzo (k) fluoranthene	•	•	0.005	e	ND
Benzo (a) pyrene			0.005	1	ND
Benzo (ghi) perylene			0.005		ND
Chrysene			0.005	:	ND
Dibenzo (a,h) anthracene			0.005		ND
Fluoranthene	,	1	0.005		ND
Fluorene			0.005		ND
Indeno (1,2,3-cd) pyrene			0.005		ND
Naphthalene		•	0.005	;	ND
Phenanthrene	•	•	0.005	•	ND
Pyrene			0.005		ND
Percent Surrogate Recovery					73

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 01/04/00.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

DECEIVED A JAN 1 0 2000

B Y: -----

Submitted by,

ZymaX envirotechnology, inc.

SS2332 MSD #5 18743-1n.xls JMM/jgt/dz/am/ll

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Client: Jim Brake

Dames & Moore

8801 Folsom Blvd., Ste. 200

Sacramento, CA 95826

Project:

UPSAC

Project Number:

00173-195-044

Collected by:

CEF

Lab Number:

18743-2

Collected:

01/03/00

Received:

01/04/00

Matrix:

Soil

Sample Description:

STNCC-04-3.0

Analyzed:

01/04/00

Method:

EPA 8270 (SIM)

CONSTITUENT	PQL*	RESULT**
	mg/kg	mg/kg

POLYNUCLEAR AROMATIC HYDROCARBONS

Acenaphthene	0.005	ND
Acenaphthylene	0.005	ND
Anthracene	0.005	ND
Benz (a) anthracene	0.005	ND
Benzo (b) fluoranthene	0.005	ND
Benzo (k) fluoranthene	0.005	ND
Benzo (a) pyrene	0.005	ND
Benzo (ghi) perylene	0.005	ND
Chrysene	0.005	ND
Dibenzo (a,h) anthracene	0.005	ND
Fluoranthene	0.005	ND
Fluorene	0.005	ND.
Indeno (1,2,3-cd) pyrene	0.005	ND
Naphthalene	0.005	ND
Phenanthrene	0.005	ND
Pyrene	0.005	ND
Percent Surrogate Recovery		78

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 01/04/00.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

Submitted by,

ZymaX envirotechnology, inc.

SS2332 MSD #5 18743-2n.xls

JMM/jgt/dz/am/ll

 $oldsymbol{s}$ ohn MacMurphey.

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Client: Jim Brake

Dames & Moore

8801 Folsom Blvd., Ste. 200 Sacramento, CA 95826

Project:

UPSAC

Project Number:

00173-195-044

Collected by:

CEF

 Lab Number:
 18743-3

 Collected:
 01/03/00

 Received:
 01/04/00

 Matrix:
 Soil

Sample Description:

STNCC-04-4.0

Analyzed:

01/04/00

Method:

EPA 8270 (SIM)

CONSTITUENT	1	PQL*		RESULT**
		mg/kg	1	mg/kg

POLYNUCLEAR AROMATIC HYDROCARBONS

				and the second s			
1	Acenaphthene	1		0.005		ND	
	Acenaphthylene	1		0.005		ND	
	Anthracene			0.005		ND	
1	Benz (a) anthracene	·		0.005	:	ND	
•	Benzo (b) fluoranthene	•		0.005		ND	
	Benzo (k) fluoranthene		•	0.005		ND	
1	Benzo (a) pyrene			0.005		ND	
	Benzo (ghi) perylene	•	i	0.005	1	ND	
_	Chrysene			0.005		ND	
)	Dibenzo (a,h) anthracene	4		0.005		ND	
l	Fluoranthene	1		0.005	•	ND	
•	Fluorene			0.005		ND	
,	Indeno (1,2,3-cd) pyrene	•		0.005	i i	ND	
	Naphthalene			0.005	5	ND	
,	Phenanthrene			0.005		ND	
į	Pyrene			0.005		ND	
•	Percent Surrogate Recovery	ir.			• ;	70	
			4				

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 01/04/00.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

SS2332 MSD #5 18743-3n.xls JMM/jgt/dz/am/ll Submitted by,

ZymaX envirotechnology, inc.

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Client: Jim Brake

Dames & Moore

8801 Folsom Blvd., Ste. 200 Sacramento, CA 95826

Project:

UPSAC

Project Number:

00173-195-044

Collected by:

CEF

Lab Number:

18743-4

Collected:

01/03/00

Received:

01/04/00

Matrix:

Soil

Sample Description:

STNCC-04-9.0

Analyzed:

01/05/00

Method:

EPA 8270 (SIM)

CONSTITUENT	PQL*	RESULT**
	mg/kg	mg/kg

POLYNUCLEAR AROMATIC HYDROCARBONS

Acenaphthene	0.005	ND
Acenaphthylene	0.005	ND
Anthracene	0.005	ND
Benz (a) anthracene	0.005	ND
Benzo (b) fluoranthene	0.005	. ND
Benzo (k) fluoranthene	0.005	ND
Benzo (a) pyrene	0.005	ND
Benzo (ghi) perylene	0.005	ND
Chrysene	0.005	ND
Dibenzo (a,h) anthracene	0.005	ND
Fluoranthene	0.005	ND
Fluorene	0.005	ND
Indeno (1,2,3-cd) pyrene	0.005	ND
Naphthalene	0.005	ND
Phenanthrene	0.005	ND
Pyrene	0.005	ND
Percent Surrogate Recovery		69

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 01/04/00.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

Submitted by,

ZymaX envirotechnology, inc.

SS2332 MSD #5 18743-4n.xls

JMM/jgt/dz/am/ll

John MacMurphey Laboratory Director

71 Zaca Lane

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Client: Jim Brake

Dames & Moore

8801 Folsom Blvd., Ste. 200

Sacramento, CA 95826

Project: UPSAC

Project Number:

00173-195-044

Collected by:

CFF

Lab Number:

18743-5

Collected: Received:

01/03/00 01/04/00

Matrix:

Soil

Sample Description:

STNCC-05-2.0

Analyzed:

01/05/00

Method:

EPA 8270 (SIM)

CONSTITUENT	·	PQL*	RESULT**
	<u> </u>	 mg/kg	mg/kg

POLYNUCLEAR AROMATIC HYDROCARBONS

Acenaphthene			0.005	•	ND
Acenaphthylene			0.005		ND
Anthracene			0.005		0.007
Benz (a) anthracene	i i	•	0.005	ľ	0.020
Benzo (b) fluoranthene		e .	0.005		0.037
Benzo (k) fluoranthene	•		0.005	,	0.015
Benzo (a) pyrene	•		0.005	. "	0.021
Benzo (ghi) perylene			0.005		0.014
Chrysene			0.005		0.029
Dibenzo (a,h) anthracene	•		0.005		ND
Fluoranthene	• .	E.	0.005		0.085
Fluorene	•	`	0.005	•	ND
Indeno (1,2,3-cd) pyrene	1		0.005		0.014
Naphthalene	•		0.005	- · · · · · · · · · · · · · · · · · · ·	ND
Phenanthrene	•		0.005		0.051
Pyrene			0.005		0.067
Percent Surrogate Recovery	•				. 97

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 01/04/00.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

Submitted by,

ZymaX envirotechnology, inc.

MSD #5 18743-5n.xls JMM/jgt/dz/am/li

SS2332

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Client: Jim Brake

Dames & Moore

8801 Folsom Blvd., Ste. 200

Sacramento, CA 95826

Project:

UPSAC

Project Number:

00173-195-044

Collected by:

CEF

Lab Number:

18743-6

01/03/00

Collected: Received:

01/04/00

Matrix:

Soil

Sample Description:

STNCC-05-4.0

Analyzed:

01/05/00

Method:

EPA 8270 (SIM)

CONSTITUENT	PQL*	RESULT**
	mg/kg	mg/kg
	······································	

POLYNUCLEAR AROMATIC HYDROCARBONS

	•	
Acenaphthene	0.005	ND
Acenaphthylene	0.005	ND
Anthracene	0.005	0.017
Benz (a) anthracene	0.005	0.013
Benzo (b) fluoranthene	0.005	0.042
Benzo (k) fluoranthene	0.005	0.013
Benzo (a) pyřene	0.005	0.018
Benzo (ghi) perylene	0.005	0.017
Chrysene	0.005	0.022
Dibenzo (a,h) anthracene	0.005	ND
Fluoranthene	0.005	0.030
Fluorene	0.005	ND
Indeno (1,2,3-cd) pyrene	0.005	0.017
Naphthalene	0.005	ND
Phenanthrene	0.005	0.012
Pyrene	0.005	0.032
Percent Surrogate Recovery		88

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 01/04/00.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

Submitted by,

ZymaX envirotechnology, inc.

SS2332 MSD #5 18743-6n.xls JMM/jgt/dz/am/ll

John MacMurphey Laboratory Director

71 Zaca tane

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Client: Jim Brake

Dames & Moore

8801 Folsom Blvd., Ste. 200

Sacramento, CA 95826

Project:

UPSAC

Project Number:

00173-195-044

Collected by:

Lab Number:

18743-7

Collected:

01/03/00

Soil

Received:

01/04/00

Matrix:

Sample Description:

STNCC-05-9.0

Analyzed:

01/05/00

Method:

EPA 8270 (SIM)

CONSTITUENT	 PQL*	RESULT**	
1	mg/kg	mg/kg	

POLYNUCLEAR AROMATIC HYDROCARBONS

Acenaphthene		0.005	ND .
Acenaphthylene		0.005	ND
Anthracene		0.005	ND
Benz (a) anthracene		0.005	. ND
Benzo (b) fluoranthene	•	0.005	, ND
Benzo (k) fluoranthene		0.005	ND
Benzo (a) pyrene		0.005	ND
Benzo (ghi) perylene		0.005	ND
Chrysene		0.005	ND
Dibenzo (a,h) anthracene		0.005	ND
Fluoranthene		0.005	ND · ·
Fluorene	•	0.005	ND
Indeno (1,2,3-cd) pyrene		0.005	ND
Naphthalene		0.005	ND
Phenanthrene		0.005	ND
Pyrene		0.005	ND
Percent Surrogate Recovery	\$		76

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 01/04/00.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

SS2332 MSD #5 18743-7n.xls

JMM/jgt/dz/am/ll

Submitted by,

ZymaX envirotechnology, inc.

John MacMurphey

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Client: Jim Brake

Dames & Moore

8801 Folsom Blvd., Ste. 200 Sacramento, CA 95826

Project:

UPSAC

Project Number:

00173-195-044

Collected by:

CEF

 Lab Number:
 18743-8

 Collected:
 01/03/00

 Received:
 01/04/00

 Matrix:
 Soil

Sample Description:

STNCC-06-1.0

Analyzed:

01/05/00

Method:

EPA 8270 (SIM)

CONSTITUENT	PQL*	RESULT**
	mg/kg	mġ/kġ

POLYNUCLEAR AROMATIC HYDROCARBONS

A 1 2 2 1 4 1	0.005	NB
Acenaphthene	0.005	ND
Acenaphthylene	0.005	ND
Anthracene	0.005	ND
Benz (a) anthracene	0.005	ND
Benzo (b) fluoranthene	0.005	ND
Benzo (k) fluoranthene	0.005	ND .
Benzo (a) pyrene	0.005	ND
Benzo (ghi) perylene	0.005	ND
Chrysene	0.005	ND
Dibenzo (a,h) anthracene	0.005	ND
Fluoranthene	0.005	ND
Fluorene	0.005	ND ·
Indeno (1,2,3-cd) pyrene	0,005	ND
Naphthalene	0.005	ND
Phenanthrene	0.005	ND
Pyrene	0.005	ND
Percent Surrogate Recovery		, 81

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 01/04/00.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

Submitted by,

ZymaX envirotechnology, inc.

SS2332 MSD #5 18743-8n.xls JMM/jgt/dz/am/ll

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

18743-9

01/03/00

01/04/00

Soil

Client: Jim Brake

Dames & Moore

8801 Folsom Blvd., Ste. 200

Sacramento, CA 95826

Project:

UPSAC

Project Number:

00173-195-044

Collected by:

CEF

Sample Description:

STNCC-06-3.0

Analyzed:

Lab Number:

Collected:

Received:

Matrix:

01/05/00

Method:

EPA 8270 (SIM)

CONSTITUENT	*		PQL*	RESULT**
•	1		mg/kg	mg/kg

POLYNUCLEAR AROMATIC HYDROCARBONS

Acenaphthene	0.005	NĎ
Acenaphthylene	0.005	ND
Anthracene	0.005	ND
Benz (a) anthracene	0.005	ND
Benzo (b) fluoranthene	0.005	ND
Benzo (k) fluoranthene	0.005	ND
Benzo (a) pyrene	0.005	ND
Benzo (ghi) perylene	0.005	ND
Chrysene	0.005	ND
Dibenzo (a,h) anthracene	0.005	ND
Fluoranthene	0.005	ND
Fluorene	0.005	, ND
Indeno (1,2,3-cd) pyrene	0.005	ND
Naphthalene	0.005	ND
Phenanthrene	0.005	ND
Pyrene	0.005	ND
Percent Surrogate Recovery		80

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 01/04/00.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

SS2332 MSD #5 18743-9n.xls JMM/jgt/dz/am/li Submitted by,

ZymaX envirotechnology, inc.

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Client: Jim Brake

Dames & Moore

8801 Folsom Blvd., Ste. 200

Sacramento, CA 95826

Project:

UPSAC

Project Number:

00173-195-044

Collected by:

CEF

Lab Number:

18743-10

Collected:

01/03/00

Received:

01/04/00

Matrix:

Soil

Sample Description:

STNCC-06-4.0

Analyzed:

01/05/00

Method:

EPA 8270 (SIM)

•		
CONSTITUENT	PQL*	RESULT**
	mg/kg	mg/kg

POLYNUCLEAR AROMATIC HYDROCARBONS

		•
Acenaphthene	0.005	ND .
Acenaphthylene	0.005	ND .
Anthracene	0.005	ND .
Benz (a) anthracene	0.005	ND
Benzo (b) fluoranthene	0.005	ND
Benzo (k) fluoranthene	0.005	ND
Benzo (a) pyrene	0.005	ND
Benzo (ghi) perylene	0.005	ND
Chrysene	0.005	. ND
Dibenzo (a,h) anthracene	0.005	ND
Fluoranthene	0.005	ND
Fluorene	0.005	ND
Indeno (1,2,3-cd) pyrene	0.005	ND
Naphthalene	0.005	ND
Phenanthrene	0.005	ND
Pyrene	0.005	ND
Percent Surrogate Recovery		92

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 01/04/00.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

Submitted by,

ZymaX envirotechnology, inc.

SS2332 MSD #5 1874310n.xls JMM/jgt/dz/am/ll

John MacMurphey

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Client: Jim Brake

Dames & Moore

8801 Folsom Blvd., Ste. 200

Sacramento, CA 95826

Project:

UPSAC

Project Number:

00173-195-044

Collected by:

CEF

Lab Number:

18743-11

Collected:

01/03/00

Received:

01/04/00

Matrix:

Soil

Sample Description:

STNCC-06-9.0

Analyzed:

01/05/00

Method:

EPA 8270 (SIM)

CONSTITUENT	PQL*		RESULT**
	mg/kg	,	mg/kg

POLYNUCLEAR AROMATIC HYDROCARBONS

Acenaphthene		0.005	ND
Acenaphthylene		0.005	ND
Anthracene		0.005	ND
Benz (a) anthracene	·	0.005	ND
Benzo (b) fluoranthene		0.005	ND
Benzo (k) fluoranthene	•	0.005	ND
Benzo (a) pyrene		0.005	ND
Benzo (ghi) perylene	•	0.005	ND
Chrysene		0.005	ND
Dibenzo (a,h) anthracene	,	0.005	ND
Fluoranthene	al .	0.005	ND
Fluorene	\$ 1 m	0.005 ⁻	ND
Indeno (1,2,3-cd) pyrene		0.005	ND
Naphthalene	4	0.005	ND
Phenanthrene	ч	0.005	ND
Pyrene	ų ų	0.005	ND
Percent Surrogate Recovery	¥		81

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 01/04/00.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

SS2332 MSD #5 1874311n.xls JMM/jgt/dz/am/ll Submitted by,

ZymaX envirotechnology, inc.

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Client: Jim Brake

Dames & Moore

8801 Folsom Blvd., Ste. 200

Sacramento, CA 95826

Project:

UPSAC

Project Number:

00173-195-044

Collected by:

CEF

00173

Lab Number:

18743-12

Collected:

01/03/00

Received:

01/04/00

Soil

Matrix:

Sample Description:

STN21-03-1.0

Analyzed:

01/05/00

Method:

EPA 8270 (SIM)

	motitodi Li A O.	E70 (Olivi)
CONSTITUENT	PQL* mg/kg	RESULT** mg/kg
POLYNUCLEAR AROMATIC HYDROCARBONS		
Acenaphthene	0.005	ND
Acenaphthylene	0.005	ND
Anthracene	0.005	ND
Benz (a) anthracene	0.005	ND ND
Benzo (b) fluoranthene	0.005	ND
Benzo (k) fluoranthene	0.005	ND
Benzo (a) pyrene	0.005	ND
Benzo (ghi) perylene	0.005	ND
Chrysene	0.005	ND
Dibenzo (a,h) anthracene	0.005	ND
Fluoranthene	0.005	ND
Fluorene	0.005	ND
Indeno (1,2,3-cd) pyrene	0.005	ND
Naphthalene	0.005	ND
Phenanthrene	0.005	ND ·
Pyrene	0.005	ND
Percent Surrogate Recovery		84

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 01/04/00.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

Submitted by,

ZymaX envirotechnology, inc.

SS2332 MSD #5 1874312n.xls

JMM/jgt/dz/am/ll

John MacMurphey

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Client: Jim Brake

Dames & Moore

8801 Folsom Blvd., Ste. 200

Sacramento, CA 95826

Project:

UPSAC

Project Number:

00173-195-044

Collected by: CONSTITUENT CEF

Lab Number:

18743-13

Collected:

01/03/00

Received:

01/04/00

RESULT**

mg/kg

Matrix:

Soil

Sample Description:

STN21-03-3.0

Analyzed:

01/05/00

Method:

PQL*

mg/kg

EPA 8270 (SIM)

		ř
DOLVANIO EAD ADOLÁATIO	LIVEROOM	40000
POLYNUCLEAR AROMATIC	HYDROCA	KRON2

Acenaphthene	0.005	ND
Acenaphthylene	0.005	ND
Anthracene	0.005	ND
Benz (a) anthracene	0.005	ND
Benzo (b) fluoranthene	0.005	ND
Benzo (k) fluoranthene	0.005	ND
Benzo (a) pyrene	0.005	ND
Benzo (ghi) perylene	0.005	ND
Chrysene	0.005	ND
Dibenzo (a,h) anthracene	0.005	ND
Fluoranthene	0.005	ND
Fluorene	0.005	ND
Indeno (1,2,3-cd) pyrene	0.005	ND
Naphthalene	0.005	ND
Phenanthrene	0.005	ND
Pyrene	0.005	ND
Percent Surrogate Recovery		69

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 01/04/00.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

SS2332 MSD #5 1874313n.xis JMM/jgt/dz/am/ll Submitted by,

ZymaX envirotechnology, inc.

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Client: Jim Brake

Dames & Moore

8801 Folsom Blvd., Ste. 200

Sacramento, CA 95826

Project:

UPSAC

Project Number:

00173-195-044

Collected by:

CEF

 Lab Number:
 18743-14

 Collected:
 01/03/00

 Received:
 01/04/00

 Matrix:
 Soil

Sample Description:

STN21-03-9.0

Analyzed:

01/05/00

Method:

EPA 8270 (SIM)

		== (01111)
CONSTITUENT	PQL*	RESULT**
·	mg/kg	mg/kg
POLYNUCLEAR AROMATIC HYDROCARBONS		
Acenaphthene	0.005	ND
Acenaphthylene	0.005	ND
Anthracene	0.005	"ND
Benz (a) anthracéne	0.005	ND
Benzo (b) fluoranthene	0.005	, ND.
Benzo (k) fluoranthene	0.005	ND
Benzo (a) pyrene	0.005	. ND
Benzo (ghi) perylene	0.005	ND
Chrysene	0.005	ND
Dibenzo (a,h) anthracene	0.005	ND
Fluoranthene	0.005	ND
Fluorene	0.005	ND
ndeno (1,2,3-cd) pyrene	0.005	ND
Naphthalene	0.005	ND
Phenanthrene	0.005	ND
Pyrene	0.005	ND
Percent Surrogate Recovery		71

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 01/04/00.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

Submitted by,

ZymaX envirotechnology, inc.

SS2332 MSD #5 1874314n.xls JMM/jgt/dz/am/ll

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Client: Jim Brake

Dames & Moore

8801 Folsom Blvd., Ste. 200

Sacramento, CA 95826

Project:

UPSAC

Project Number:

00173-195-044

Collected by:

CEF

Received:

18743-15

Lab Number: Collected:

01/03/00

01/04/00

Matrix:

Soil

Sample Description:

STN21-03-10.0

Analyzed:

01/05/00

Method:

EPA 8270 (SIM)

CONSTITUENT	 	PQL*	RESULT**
·		mg/kg	 _mg/kg

POLYNUCLEAR AROMATIC HYDROCARBONS

Acenaphthene	:			0.005		ND
Acenaphthylene	·	•		0.005		ND
Anthracene				0.005		ND
Benz (a) anthracene			•	0.005		ND
Benzo (b) fluoranthene				0.005		ND
Benzo (k) fluoranthene			2	0.005		ND
Benzo (a) pyrene				0.005	•	ND
Benzo (ghi) perylene		•		0.005	9	ND
Chrysene				0.005	\$	ND
Dibenzo (a,h) anthracene				0.005		ND
Fluoranthene				0.005		ND
Fluorene				0.005		ND
Indeno (1,2,3-cd) pyrene	1	•		0.005	E	ND
Naphthalene			,	0.005		ND
Phenanthrene				0.005	4,	ND
Pyrene	:			0.005	•	ND
Percent Surrogate Recovery						80

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 01/04/00.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

Submitted by,

ZymaX envirotechnology, inc.

MSD #5 1874315n.xls JMM/jgt/dz/am/ll

SS2332

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

QUALITY ASSURANCE REPORT MATRIX SPIKE RESULTS

Client: Jim Brake

Dames & Moore

8801 Folsom Blvd., Ste. 200

Sacramento, CA 95826

Project:

Fluorene

UPSAC

Project Number:

00173-195-044

Collected by:

CEF

Lab Number: Collected: 18743-1 MS

78

70

01/03/00

Received:

01/04/00

Matrix:

01/04/0 Soil

Sample Description:

STNCC-04-1.0

Analyzed:

01/04/00

Method:

EPA 8270 (SIM)

ND

CONSTITUENT	Amount Spiked	Amount Recovered	Original Amount	Percent	
	mg/kg	mg/kg	mg/kg	Recovery	
POLYNUCLEAR AROMA	ATIC HYDROCARBO	ons			
Benzo (a) pyrene	0.080	0.062	ŊD	78	
Benzo (b) fluoranthene	0.080	0.054	ND	68	
Naphthalene	0.080	0.048	ND	60	
Phenanthrene	0.080	0.064	ND	80	

0.062

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 01/04/00.

Percent Surrogate Recovery

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

0.080

SS2332 MSD #5 18743-1m.xls JMM/jgt/dz/am/ll Submitted by,

ZymaX envirotechnology, inc.

Jehn MacMurphey

QUALITY ASSURANCE REPORT MATRIX SPIKE DUPLICATE RESULTS

Client: Jim Brake

Dames & Moore

8801 Folsom Blvd., Ste. 200

Sacramento, CA 95826

Project:

UPSAC

Project Number:

00173-195-044

Collected by:

CÉF

Lab Number: Collected:

18743-1 MSD

01/03/00

Received:

01/04/00

Matrix:

Soil

Sample Description:

STNCC-04-1.0

Analyzed:

01/04/00

Method:

EPA 8270 (SIM)

CONSTITUENT	Amount Spiked	· Aı	mount Recovered	Percent	Relative Percent
	mg/kg		mg/kg	Recovery	Difference*
-	*			• .	•
POLYNUCLEAR AROMATIC H	YDROCARBONS			•	•
•				• .	
Benzo (a) pyrene	0.080	•	0.075	94	19
Benzo (b) fluoranthene	0.080	•	0.068	85	23
Naphthalene	0.080	• ,	0.060	75	22
Phenanthrene	0.080		0.084	105	27
Fluorene	0.080	à	0.073	91	16
	,		•	0 1	
Percent Surrogate Recovery	N.		•	77	

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 01/04/00.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

Submitted by,

ZymaX envirotechnology, inc.

MSD #5 18743-1m.xls

SS2332

JMM/jgt/dz/am/ll

John MacMurphey

^{*}Relative Percent Difference of the spike and spike duplicate

QUALITY ASSURANCE REPORT SPIKE RESULTS

Client:

ZymaX envirotechnology, inc. 71 Zaca Lane, Suite 110 San Luis Obispo, CA 93401

Project:

Project Number:

Collected by:

Lab Number:

LCS SS2332

Collected: Received:

Matrix:

Soil

Sample Description:

Laboratory Control Spike

Analyzed:

01/04/00

Method:

EPA 8270 (SIM)

CONSTITUENT	Amount Spiked	Amount Recovered	Percent
	mg/kg	mg/kg	Recovery
POLYNUCLEAR AROMATIC HY	DROCARRONS		
, oe model min mon min mon	D110 9, 1110 1110		• •
Benzo (a) pyrene	0.080	0.067	84
Benzo (b) fluoranthene	0.080	0.063	79 [.]
Naphthalene	0.080	0:055	· 69
Phenanthrene	0.080	0.077	96
Fluorene	0.080	0.070	88
·			•
Percent Surrogate Recovery			73
•		*	

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 01/04/00.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

SS2332 MSD #5 SS2332qn.xis JMM/sw/dz/am/ll Submitted by,

ZymaX envirotechnology, inc.

Client:

ZymaX envirotechnology, inc. 71 Zaca Lane, Suite 110

Project:

Project Number: Collected by:

San Luis Obispo, CA 93401

Lab Number: BLK SS2332 Collected: Received: Matrix: Soil

Sample Description:

Method Blank

Analyzed:

01/04/00

Method:

EPA 8270 (SIM)

CONSTITUENT		PQL*	RESULT**
		mg/kg	mg/kg
POLYNUCLEAR AROMATIC HY	DROCARBONS		1
Acenaphthene		0.005	ND
Acenaphthylene	4	0.005	ND
Anthracene	:	0.005	, ND:
Benz (a) anthracene		0.005	ND -
Benzo (b) fluoranthene		0.005	ND
Benzo (k) fluoranthene		0.005	ND
Benzo (a) pyrene		0.005	ND
Benzo (ghi) perylene	3	0.005	ND
Chrysene		0.005	ND
Dibenzo (a,h) anthracene	.*	0.005	ND
Fluoranthene		0.005	ND
Fluorene		0.005	ND
Indeno (1,2,3-cd) pyrene	P	0.005	ND
Naphthalene	-	0.005	ND
Phenanthrene		0.005	ND
Pyrene		0.005	: ND
Percent Surrogate Recovery			96

ZymaX envirotechnology, inc. is certified by CA Department of Health Services: Laboratory #1717

Note: Extracted by EPA 3550 on 01/04/00.

Note: Analyzed in the Selected Ion Monitoring (SIM) mode.

SS2332 **MSD #5** SS2332bn.xls JMM/jgt/dz/am/ll Submitted by,

ZymaX envirotechnology, inc.

^{*}PQL - Practical Quantitation Limit

^{**}Results listed as ND would have been reported if present at or above the listed PQL.

Chain of Custody Record

71 ZACA LANE SAN LUIS OBISHO CA 93401 805524 4696

QUA-4124 0797					7 %		76	ا او	<u> </u>							10	_						100.0			li an li a		
Client		Project Manager Date 3 1-30-00														Chain of Custody Number 2682												
DAMESSMOORE	Telephone Number (Area Code)/Fa																			_	<u>ب</u>		<u> </u>					
8801 FOLSOM BUD STITE 700														Pag	10	2	_ of	-	7									
State Zip Code	Site Conta	9/6 38 7 - 8807				Lab Contact							<u>ء ر</u>		An	alysis							1 . 2					
M 90001		a S F				Lab Ochiaci									mor	ө ѕр	9 <i>CB</i>	is ne	ede	9d)								
Project Name	Carrier/Wa	ybili N	lumbi	er	<u> </u>			*					-	I	- 1			-		ļ	ļ	- 1	:				41	
UP SAC												7	ĺ	- 1	<i>!</i> .		- [-			ļ			Šp	ecial	Instru	uctio	ns/
Contract/Purchase Order/Quote No:		T	Matrix				Containers &						- }		- 1	ŀ		- {	- {	- 1	I	-	}	Col	nditio	ns of	Rec	eipt
OD173-195-844			Mai	uix	1	Preservatives						28.5									- 1	-						
Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date	Time	Aqueous	Sed	los.	, longs	H2SQ4	HNOS	HC!	NaOH	ZnAc/ NaOH		Y.												ab #				
STN21-03-3,0 1/3/00	1136	<u> </u> _		X	<u>}</u>	_		. '				X			_]	_	_		_			_		873	3- /	3		<u></u>
STN21-03-90	1150	_		1	19	1						1			4	_	_	\downarrow	_		\dashv	4	_	4	-70	/	·.	
STN21-03-10.0	1158	_		4	9	1	ļ.,	<u> </u>				U	_		\dashv	_	_	\perp	_			_	_		-1	<u> </u>		
].											l													
											,																** .	<u>بەر</u> قى <u>يەرقەرىد</u>
		ŀ													- [- {	- 1	-	-	-	ļ							
		†		1	7	T																						
																										``	-	
							1				٠.,				١		\perp						1					
					1		<u> </u>			·																		
							-											-										
Possible Hazerd Identification Non:Hazerd Flammable Skin Irritant Poison B	Unknown			sposal		<u>↓</u>	Dispo			K	_	Archi		l			<u></u>							if samp	les are	retair	ned.	
☐ Non-Hazerd ☐ Flammable ☐ Skin Irritant ☐ Poison B ☐ Turn Around Time Required	Unknown	<u> </u>	eturn	10 CI	ieru		C Req						VUF	<i>or</i> _	==	=_"	OTIL	S .	ung	ai ui	un 3	mon	ui\$)					
24 Hours	Ø Other_	Pc	15,	1_	·					fiz.		,																
1. Relinquistled By G G	Datey	00	Tin	ne 163		7.	Rece	ived i	Ву														D.	te .		Tim	θ	
2. Relinquished By	Date		Tin		<u>و رو</u> :	2.	Rece	ived i	Ву			-		- :			<u> </u>	·, .	_					ate		Tim	е	
3. Relinquished By	Date		Tin	ne .		3.	Rece	ived)	By I	X 9	a	X	D OX	201	$\overline{}$		<u>.</u>		· · ·				D.)-Y	- 00	Tim.	0	 }o
Comments					•							À	72	1	-													
STANDARD CEVEL 2 DELL	JERAS	<u> رو</u>	-	A - >	بالأ	4.	<u> </u>	E.E	-10	E	~			1_							_		·					<u>. </u>

Chain of Custody Record

.805.544.4696 805.544.8726

71 Zace Lane San luis Opispo, CA 93401

QUA-4124 0797				·		٠٠.											To-			•			10	nin of Custoch Ali	umbor.	
Client	Project Manager																- 3 - e				Chain of Custody Number 2836					
Dames ; Moore	Talanhana	Telephone Number (Area Code)/Fax Number													I sh Number							+			<u> </u>	
8801 Folson Blud. Switz	e 700	916-387-8800 /916-387-080Z													Lab Number 18733							P	age	of _	2	
City State Zip Co.		Site Contact Lab Contact									$\overline{}$				Analysis (Attaon list if									<u></u>		
Sacramento CA 95	876	T. 705	T, Joseph													more	spa	ice is	<u>nee</u>	ded))		_		:.	
Project Name		Carrier/Way			er .		•		,				40	,							1					
upsac .													82											Special II	nstructi	ons/
Contract/Purchase Order/Quote No.				Mat	rix				ntain				3 8		-	-		ļ	ļ.	ļ				Condition	s of Re	ceipt
00173-195-044	· · · · · · · · · · · · · · · · · · ·	1	9.1		- 		6 4		serva		_		I					.							,	
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Aqueou	Sed.	llo Soil		H2SO4	HNOS	Ę	NaOH	ZnAc/ NaOH		PA PA					1	$oldsymbol{\perp}$	_	_		<u> </u>	Lab#		
STNCC-04-1.0	1/3/00	0415	3		XL	_ 2	4	<u>.</u>	_			·	X			4		_	\perp	1	↓	Ŀ	_	18783-1	-	
STNCC-04-3.0	61	0970		_	7	-11	1	<u> </u>	<u> </u>	<u> </u>			1			4	4	\bot	4-	1	↓_	-	_	7 -2		
STNCC-04-40		0925		_	11	_		1		ļ		_	1			4	_	4	+	-	\perp	<u> </u>	_	- 3		
STNCC -04-9.0		0945		_	44		11		ļ			•				4	-	_	\perp	1	 	┡		-4		· · · · · · · · · · · · · · · · · · ·
STNGC-05- 2.0		0958		_	11		Ц·			,							4		_	:	<u> </u>	L	_	-5	· · · · ·	,
51xe-05-40		1002		_	41	Ш	Ц.	1	<u> </u>							4	4	_	1	\perp	╀	_	_	-6		
STNCC-05-9.0		1020			11	Ш		_		٠.			Ц					\perp	<u> </u>		Ļ	_		- 7		
STNCC-06-1.0		1037			11.	Ш		-	<u> </u>	<u> </u>						_		1						-8	<u> </u>	
STNCC-06-30		1042							N (7, 10								:		1.		-	· I i i i i i i i i i i i i i i i i i i	39.25.00	-9		
STNCC-06-4.0		1048		_	11	_ _	<u> </u>	1		_			Щ			_	1	4	1	1	_	_	<u> </u>	-10	· · ·	
STNCC-06-9.2		1102			1		_	1	$oldsymbol{ol}}}}}}}}}}}}}$				1		.	_	_	1	4.	_		_	1_	- 11		
STN21-03-10 Possible Hazard Identification	14	1133			9	<u></u>		_		<u> </u>			1					$oldsymbol{\perp}$	<u>l</u>	<u>.</u>			L_	-12		·
	Poison B 🔲 (•		posal To Cli	ent		Disp	osal i	Šv La	ab j		Arch	ive F	or _		ı.	ionth:	(A					ed if samples are	retained	
Turn Around Time Required											s (Sp									-			<u> </u>		-	
24 Hours 2 7 Days 14 Days	21 Days	Other_	A.	10	<u>'us</u>	h				-																
1. Relinguisted By		Date / / / / / / / / / / / / / / / / / / /		Tim			1.	Rece	eived	Ву							-							Date	Time	
2. Gefinquished By		Date		Tim		<u> </u>	2.	Rece	ived	Ву		-						······	<u> </u>	٠.	,	-	<u>.</u>	Date	Time	
,		Data.		1			+	Rece	A	D.,			A					٠.						Date	. Time	<u> </u>
3. Relinquished By		Date		Tim	18	· 	J.				No		Ko	or	M)								1-4-00	10.	30
Comments		la.	_	44.										1									•			
Standard level Z	de luccas	DIE G	<u>- > </u>	٥.	415	<u> </u>	nev	J.1												<u> </u>	-				_	